This preview shows page 1. Sign up to view the full content.
Chapter 2
Heat Conduction Equation
283
Both sides of a large stainless steel plate in which heat is generated uniformly are exposed to
convection with the environment. The location and values of the highest and the lowest temperatures in the
plate are to be determined.
Assumptions
1
Heat transfer is steady since there is no indication of any change with time.
2
Heat transfer
is onedimensional since the plate is large relative to its thickness, and there is thermal symmetry about the
center plane
3
Thermal conductivity is constant.
4
Heat generation is uniform.
Properties
The thermal conductivity is given to be
k
=15.1 W/m
⋅
°C.
Analysis
The lowest temperature will occur at surfaces of plate
while the highest temperature will occur at the midplane. Their
values are determined directly from
C
155
°
=
°
×
+
°
=
+
=
∞
C
.
W/m
60
m)
015
.
0
)(
W/m
10
5
(
C
30
2
3
5
h
L
g
T
T
s
C
158.7
°
=
°
×
+
°
=
+
=
C)
W/m.
1
.
15
(
2
m)
015
.
0
)(
W/m
10
5
(
C
155
2
2
3
5
2
k
L
g
T
T
s
o
T
This is the end of the preview. Sign up
to
access the rest of the document.
This note was uploaded on 01/14/2012 for the course PHY 4803 taught by Professor Dr.danielarenas during the Fall '10 term at UNF.
 Fall '10
 Dr.DanielArenas
 Thermodynamics, Convection, Mass, Heat

Click to edit the document details