inertialnav_v2 - Inertial Navigation Mechanization and...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Inertial Navigation Mechanization and Error Equations 1 Navigation in Earth-centered coordinates Coordinate systems: • i – i nertial coordinate system; ECI. • e – e arth fixed coordinate system; ECEF. • n – n avigation coordinate system; local level, NED. Fundamental equation of inertial navigation: ¨ r i = f i + G i Navigation in a coordinate system fixed to the Earth is more practical: r i = C i e r e First derivative: ˙ r i = ˙ C i e r e + C i e ˙ r e = C i e Ω e i/e r e + C i e ˙ r e Second derivative: ¨ r i = ˙ C i e Ω e i/e r e + C i e ˙ Ω e i/e r e + C i e Ω e i/e ˙ r e + ˙ C i e ˙ r e + C i e ¨ r e = C i e Ω e i/e Ω e i/e r e + C i e ˙ Ω e i/e r e + C i e Ω e i/e ˙ r e + C i e Ω e i/e ˙ r e + C i e ¨ r e = C i e Ω e i/e Ω e i/e r e + ˙ Ω e i/e r e + 2Ω e i/e ˙ r e + ¨ r e Combining with the fundamental equation: f e + G e = ω e i/e × ω e i/e × r e | {z } Centripetal + ˙ ω e i/e × r e | {z } Euler + 2 ω e i/e × ˙ r e | {z } Coriolis +¨ r e 1 2 Navigation in local-level coordinates It is even more practical to calculate velocities in local level coordinates (velocity east, velocity north), and calculate position in geodetic coordinates (latitude, longitude). 2.1 Velocity equation By definition: v n , C n e ˙ r e First derivative: ˙ v n = ˙ C n e ˙ r e + C n e ¨ r e = C n e Ω e n/e ˙ r e + C n e ¨ r e Solve for ¨ r e : ¨ r e = C e n ˙ v n- Ω e n/e ˙ r e Now, repeating the Earth centered navigation equation from the previous section with the Euler term neglected: f e + G e = Ω e i/e Ω e i/e r e | {z } First term + 2Ω e i/e ˙ r e | {z } Second term + ¨ r e |{z} Third term We will convert the above equation to navigation coordinates term by term. First term: Ω e i/e Ω e i/e r e = C e n ( C n e Ω e i/e C e n ) ( C n e Ω e i/e C e n ) C n e r e = C e n Ω n i/e Ω n i/e r n Second term: 2Ω e i/e ˙ r e = 2Ω e i/e C e n v n = 2 C e n ( C n e Ω e i/e C e n ) v n = 2 C e n Ω n i/e v n Third term: ¨ r e = C e n ˙ v n- Ω e n/e ˙ r e = C e n ˙ v n- C e n ( C n e Ω e n/e C e n ) C n e ˙ r e = C e n ˙ v n- C e n Ω n n/e v n 2 Recombining: f e + G e = Ω e i/e Ω e i/e r e + 2Ω e i/e ˙ r e + ¨ r e = C e n Ω n i/e Ω n i/e r n + 2 C e n Ω n i/e v n + C e n ˙ v n- C e n Ω n n/e v n = C e n ( Ω n i/e Ω n i/e r n + 2Ω n i/e v n + ˙ v n- Ω n n/e v n ) = C...
View Full Document

This note was uploaded on 01/15/2012 for the course EEL 6935 taught by Professor Staff during the Fall '08 term at University of Florida.

Page1 / 10

inertialnav_v2 - Inertial Navigation Mechanization and...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online