225_08_bounds

# 225_08_bounds - MathematicsofAlgorithmAnalysis 450 400 350...

This preview shows pages 1–8. Sign up to view the full content.

1 0 50 100 150 200 250 300 350 400 450 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mathematics of Algorithm Analysis

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Outline Lower bounds and upper bounds on functions. Terminology for talking about the amount of time or  space that an algorithm uses.
3 Picture from http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html The area in the red boxes is a  lower bound  for the area  under the yellow curve.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Picture from http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html The area in the red boxes is an  upper bound  for the area  under the yellow curve.
5 0 10 20 30 40 50 60 70 80 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 The function  2n  is a lower bound for  3n , and  4n  is an  upper bound (n ≥ 0).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 0 50 100 150 200 250 300 350 400 450 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 n 2  /4            ≤    n (n+1)/2     ≤    n 2    for n ≥ 0. lower bound                            upper bound
7 Definition: Lower bound. A func tio n f(x) is  a   lower bound  for g(x) over a range R if for  all x in R, f(x) ≤ g(x).  Definition: Upper bound. A func tio n f(x) is  a n

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/15/2012 for the course CSC 225 taught by Professor Valerieking during the Spring '10 term at University of Victoria.

### Page1 / 21

225_08_bounds - MathematicsofAlgorithmAnalysis 450 400 350...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online