225_35_NP-complete

225_35_NP-complete -...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
1 How many key comparisons does this algorithm do for  finding the min and the max of n=2k data items: 1. for (i=0; i < n; i+=2)      if (A[i] > A[i+1]) swap(A[i], A[i+1]) Then use a linear scan (like in MaxSort) to 2. Find the min of  A[0], A[2], A[4], … , A[n-2] 3. Find the max of A[1], A[3], A[5], … A[n-1]
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Old final Exam Question Answer true or false and justify your answer: Since it takes at least n-1 key comparisons to find the min  of n data items and it takes at least n-1 key comparisons  to find the max of n data items, it takes at least 2n-2 key  comparisons to find both the min and the max.
Background image of page 2
3 Final exam tutorial: Wednesday Dec. 7 at 12:00pm,  Elliott 061. 8 old final exams are available from our class web page.   Solutions to written exercises are posted (#5 available  soon) on connex. Ask me at the tutorial if you have questions about the  programming exercises.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4
Background image of page 4
5 Introduction to NP-completeness All the algorithms we have studied so far run in polynomial time  [O(n c ) for some constant c]. There are lots of other interesting and important problems for  which we do not have polynomial time solutions. 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Table 1: Comparing polynomial and exponential time complexity. Assume a problem of size one takes 0.000001 seconds (1 microsecond). Size n 10 20 30 40 50 60 n 0.00001 second 0.00002 second 0.00003 second 0.00004 second 0.00005 second 0.00006 second n 2 0.0001 second 0.0004 second 0.0009 second 0.0016 second 0.0025 second 0.0036 second n 3 0.001 second 0.008 second 0.027 second 0.064 second 0.125 second 0.216 second n 5 0.1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.2 minutes 2 n 0.001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 centuries 3 n 0.059 second 58 minutes 6.5 years 3855 centuries 2*10 8 centuries 1.3*10 13 centuries (from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness , W. H. Freeman, New York, 1979.)
Background image of page 6
7 Time Complexity function With present computer With computer 100 times faster With computer 1000 times faster n N1 100 N1 1000 N1 n 2 N2 10 N2
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/15/2012 for the course CSC 225 taught by Professor Valerieking during the Spring '10 term at University of Victoria.

Page1 / 32

225_35_NP-complete -...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online