225_42_new_Kruskal_analysis

225_42_new_Kruskal_a - Assignment#5:DueFridayDec.2atthebeginningof class Finalexamtutorial WednesdayDec.7at12:00pm,Elliott061 #3(c (b,drawthedata

This preview shows pages 1–5. Sign up to view the full content.

1 Assignment #5: Due Friday Dec. 2 at the beginning of  class. Final exam tutorial: Wednesday Dec. 7 at 12:00pm,  Elliott 061. 8 old final exams are available from our class web page.   Clarification to Question #3(c)  Starting with your answer from part (b),  draw the data  structure and give the parent array that shows the result  after a weighted union, W-UNION(0, 11) is called.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Minimum weight spanning tree: Put a non-negative weight on each edge. Weight of a tree: sum of weights of its edges. Problem: find a spanning tree of graph G with minimum  weight. Kruskal’s algorithm: sort edges by weight. Then for each edge: add it to the tree if its endpoints are  in different components.
3 Edge weights:  1 3 4 5 6 8 9 11 12 14 15 21

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Analysis: Which data structures/algorithms can we use to  implement Kruskal’s algorithm. Tasks:
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/15/2012 for the course CSC 225 taught by Professor Valerieking during the Spring '10 term at University of Victoria.

Page1 / 17

225_42_new_Kruskal_a - Assignment#5:DueFridayDec.2atthebeginningof class Finalexamtutorial WednesdayDec.7at12:00pm,Elliott061 #3(c (b,drawthedata

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online