This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Math 201 Assignment #7 Solutions November 18, 2011 1. Use the Laplace transform to solve y 00 + 4 y = U ( t 2 ) sin t , y (0) = 1 , y (0) = 0 , where U ( t ) is the unit step function. Take Laplace transforms on both sides, where Y = L{ y } y (0) sy (0)+ s 2 Y +4 Y = L{ U ( t 2 ) sin t } = L{ U ( t 2 ) sin( t 2 ) } = e 2 s 1 s 2 + 1 Substitute in y (0) = 1 and y (0) = 0 , and isolate Y Y = s s 2 + 4 + e 2 s 1 ( s 2 + 4)( s 2 + 1) = s s 2 + 2 2 + e 2 s 1 / 3 s 2 + 1 1 / 3 s 2 + 4 ! Note that the fractions in the parenthesis is derived from partial fraction. Take inverse Laplace transforms on both sides, y = L 1 { s s 2 + 2 2 } + 1 3 L 1 { e 2 s 1 s 2 + 1 }  1 6 L 1 { 2 s 2 + 2 2 } = cos 2 t + 1 3 sin( t 2 ) U ( t 2 ) 1 6 sin 2( t 2 ) U ( t 2 ) = cos 2 t + 1 3 sin t U ( t 2 ) 1 6 sin 2 t U ( t 2 ) 2. Given that y = x is a solution of ( x 2 +1) y 00 2 xy +2 y = 0 , find another linearly independent solution....
View
Full
Document
 Winter '10
 STEACY
 Math

Click to edit the document details