# project-2 - 2. Two-factor worm propagation model ( Zou’s...

This preview shows page 1. Sign up to view the full content.

CDA6530: Performance Models of Computers and Networks (Fall 2011) Project 2: Using Matlab Simulink to derive numerical solution for differential equations (assigned 10/11; due: 10/26 midnight) You have learned matlab simulink from the example of the simple worm propagation modeling in class. Now you are asked to derive the numerical solutions for more complicated differential equations. Submission : please submit this project assignment via webcourse. You should attach a Winzip file containing a document (such as word) containing experiment figures and simulink model figures, and a simulink model file (.mdl), and a matlab script file (.m file), so that I can test by myself. 1. 2nd-order mass-spring-damper system. You are requested to solve the ODE: ) ( t f kx x c x m = + + With initial conditions: 0 ) 0 ( , 0 ) 0 ( , 0 ) 0 ( = = = x x x and parameters m = 0.25, c = 0.5, k = 1. The input ) ( t f is a step function with magnitude 3. The experiment output can use a “scope” figure to represent.
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2. Two-factor worm propagation model ( Zou’s CCS’02 paper) As you learned the simple worm propagation model simulation, here you are requested to simulate the two-factor worm propagation model, which is: Where ) ( ) ( ) ( t R t I t J + = The simulation parameters are: N=1,000,000, 1 = I , 3 = η , 05 . = γ , N / 06 . = μ , N / 8 . = β . This model is introduced in the page 8 of the paper: http://www.cs.ucf.edu/~czou/research/codered.pdf You are requested to draw the J(t), I(t), Q(t) by using plot() command in workspace (similar to the figure 7 in the paper). That means you have to save the simulation results into workspace variable and then plot them out. In your submission, please provide the model .mdl file and also the matlab script file (in which you call the simulink model and plot the results)....
View Full Document

## This note was uploaded on 01/14/2012 for the course CDA 6530 taught by Professor Zou during the Fall '11 term at University of Central Florida.

Ask a homework question - tutors are online