# 3.5 - 3.5 Exponential Growth and Decay Modeling Data 1...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3.5 Exponential Growth and Decay: Modeling Data 1. Model exponential growth and decay. .Eiapunaniiat Gravith mid {item} Madeira The mathemaiiuai mac: for mama-sulfa! gmwﬁ'rt or away given by as} m age“ m a :2: aura”. * H’ £2 23* it, the fauaﬁm mortals ﬁre amumia err aim; sulfa gmwiag entity. xix is Kira original: t1]?ki§'tiil=i.{}'s.’ Siam of Eire grewiag autéty a: time 1’ m t1 A: is: the aruuunt a: tiara I, and k is. a minimal raprasaartiag tar: gruwttr aria. * El“ £1 «a: all; the. function maals {Ira atria-amt. at size, as? a: damping emit-,3; All: la the migiaal antnumior siaerof that: éacajringantiwar rlma t m A la the amuunr a: tiara a and a Gunman? repreaanting the (Eve [ray raga. .35 IF [Hamming ' . . m. It? ,‘1 ‘ r39“ £12.11 - mecmaaiag [at Expameaaiar growth 11%;} Exponential? tine-a}: The exponential equation A 2108.360‘0‘2’ describes the population of a particular country in millions 1‘ years after 2003. When will the population of the country be 150 million? .olat- 1150: 103-3 8 H .01).? 12-0—- : 8 [08.3 .019— I: An artifact originally had 20 grams of carbon-14 present. The decay model A = Aura—O‘OOOD” describes the amount of carbon-l4 present after tyears. How many grams of carbon-14 will be present in 8243 years? Round your answer to two decimal places. p.00013l it" A: A09 LAD : 80%3 E: 8293 W5 _. 00012! (qlq' 3) A: 510 e :l'glgclﬁms' Cio LyiD/ (DOC): ————-*"”T,_.|2:>_>< / [+5111 8 90 "2”- 2:... 210 1 fjsz Q — go, [+2J3H'Q— l q- .. IZZX 7. é..l2.?_7‘ ; 9—9, VQM e, " “QM—Fain? 1+2?! 40 9, SIC—Tl 9' ’ 3:3 ’12,“: J/w'l/I‘E‘lil» _ ._ a ’— %% “"5;— F “uni/1939 -1291 x ’ Q t _”g_._—_— 231 q ,_ h VS ; __z_ 4,: 3, l “0‘3 l :l '25?! I‘M} 2. Use logistic growth models. Logistic growth Model. The marz’lmnatisal model. for limited logistic growth is givers: £1395 - , f L‘ an “‘ar' ﬁr Hm whit il+ﬂfL View?” where a, It}, and? a“ are coast-lama with. ac: is» {,1 and f: 11* {1; 1 Hartman! alignment: ‘" pass-ids: a Hail In grsﬂlh. lat-raising ESE: m“ ——-——————__5, K ﬁﬁgintl {Wait at J 2 a Figaan aim} “Elm logistic gravest: same has swim-12.3% asyn’tpsme that sdcnsiiics 1311‘: 1mm a}! ‘th grams: (in? :3: mm Ismu. 90 I 1 + 25716—0122: models the percentage, P0), of Amerlcans who are t years old with some coronary heart disease. At what age is the percentage of some coronary heart disease 25%? PO) = #122}: ‘13" '—" O .. Q. r p *5" ,5 \ 21' 6} __.:22b 2* Sb M7 /- [+37He "',@h13 6 \ _-|29_l: go JlMe - E6, ‘9, g“ Ham 3 ; 9—8;, “mg”; 12mg; S "aha “422E ——-D.-2—E:- vO/hlisws . Choose an appropriate model for data. y gm at»; a :r- #1: l3 2% 3;“: air”. 1; ME; s: all s; l Exprmmaﬁal Expo-1m: tis! ﬁgure: 4i?! ﬁmstsr grails fps" exprmmsiia'l. gar 'lsnglariti‘ira‘m mam ‘i‘ J9 y =42 + £1 la as a b I}, l; a (,3 gym er + {\$13th a 3- £3, E: H} Logarithmic Lugs rim-mic [How can we obtain a ﬁinetion that models the data? A graphing utility can be used to obtain a logarithmic model .O'flihe: x3. 'eCaiIse the domain of the logarithmic Set of positive numbers, zero must not be a value for X. The technique for logarithmic equation is the same as for ﬁnd-m tighe-exponehtial;equation on: a graphing calculator. On the STAT; CALCIme-nu Choose '9 for Logarithmic Regression. 4. Express an exponential model in base 6. Eapreaaiiag at; Eapnnmﬁai Mattel in are: 3i” m ﬂﬁm equivalent to y at“ :z-tJ-l--'-‘7‘*5E“" An ancient artifact contained 25% of the original carbon-l4. Estimate the age of the artifact. (Use A = Age—O'OOOW .) i.— .i . 000 I21 - ' A0 a l, \/ FY; “Lg/‘7? A0 ‘: ZEDﬂIBHD _ coma? 9' 7— 0‘ Q lo _ 000121 [— o " : Q 1L.) 0001er P ...
View Full Document

## This note was uploaded on 01/16/2012 for the course MATH 126 taught by Professor Blisinhestiyas during the Fall '11 term at Truckee Meadows Community College.

### Page1 / 6

3.5 - 3.5 Exponential Growth and Decay Modeling Data 1...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online