7.3 - for every value of. .r for which both functions are...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: for every value of. .r for which both functions are defined. Such an eque lion is referred to as; am identity. An equatirm that not an identity is called :51 conditional equation. Use A1 ebra to Sim 1i Tri onometric EX ressions. RCWI'lte cos2 x+cot2 x+ sin2 x 111 terms Ofcscx . ' “2 3 1 h I 2 , r 1 _ 2‘ '— CO$X+$mX riCo-i X E HAT-1L I : Swag 2 0V" 1Q ’4— Cor X Z 3 2: C536. Lx‘ =- - 'i- - £4" {5% C‘ZX t’VW “COM ,, 4L:{_t ‘33 COBGQD; C393 8; Sec.(—o):§ec8 LowE—S): win/lo; Co+(v0):'—Co}8 Simplify by rewriting 5m1+ COW—1 over a common denominator. COS x + $111 x gin!" SEEN (fogx—i (COSX‘FE) anx (60” H 5 31% )6 Gas x H ) ’SIHD'ZX i-#[Co<3x‘——I)(COS‘X.+I ) "‘ (2.st ginX—‘r’ces’x‘m' — W’F—H ~ 5» ~ 3Cn>§ (60% H 9.04m“; ) (a) Simplify tan ‘9 sec 6 of sine and cosine functions. by rewriting each trigonometric function in terms tone —j— $26 9 gfn L9 ,3; ‘ Cos 9 605 3 page i I S {@6- i (b) Show that 1:1“ 66 = Loos—Q by multiplying the numerator and cos sm . K,‘ _. (9 denominator by l—cost9 5mg - a 113:9 U.\-\i:<3939)Li—C’9393 marge “is ‘ _c:o23/e teas/E» r_- c539 ‘5 MN I *Cog’e) i . '2. ‘ ___ 1 . —— J i COS 9' I "L535 l C03 8’ _‘ ————— a $an 1 1 Sifie ([241. (c) Simplify + 1-sinu l+sinu common denominator. (l—fii‘nuMH—Sinu) ’.[_$f bK-4—l ’glifld -: & 1-3fnui)(i+$rinbk) l-3fn1bL by rewriting the expression over a lcoszi/H’P) “wig “ 31 (PF-El; (d) Simplify —.———l— by factoring. " 38“. s1nv+cosvsmv Fri 1’— rib ' r— S {n I? 6 In l/ Establish Identities. Guidelines for Establishing Identities 1. It is almost always proferable to start with the side containing the more compiicatocl expression. 2. Rewrite sums or di‘ffcrenceg of quotients as a single quotient. 3. Sometimes; rewriting one side in terms of Sines and cosmos only will help. 4. Alwa keep your goal in mind. As you manipulate one side of the expres~ sion. you must keep in mind the form of the expmssion on the other side. Verify the following identities. 1 l \————+—:————=ZSecx (secx+tanx) (éecx—tanx l g) .Vl .__"l0/V\X (chHo x)l§£cx )ay QSQCX g efx «— to:le . g QCX Rikch (S! c “Pom )(Secx—iom Y) Sac x + $QCX—H’ V»! t See Xll-lOmX) ($0M -—-1LW\X> ' Ar + D; F" in P; smx = —cosxtan(—_x) goes): (~—) W I Coax hmv ,‘7 M. anx —;. [3m 1—csc9sin39f63359 l»— ._L. 8:“:ng- S" 9 Mid-Stnlafl 3— 'v H. iCO$9 ‘__i__,,‘ gas/209 W I csc6—sin6’ 9509 ’ . 9‘ t29=—-—~— . C0 sing 479 '— l(:lr12€’ , sip/9 $12? 95.9.; "" S1 ' g‘l‘g- @032 grne -"“’ 1 ’ “‘ ‘~ ~77: Slfinzg— 3‘“ er- 3312C): 1. ‘C‘QSQEX’J sin2 6—tan6’ cos2 6—cott9 \gyog ‘ ‘7. 89 ‘ Gosefg‘fn‘D—B -" Sffig (COS a" Coo ) «*fl Case - ' KC-Ogb) I 7— srge C056 _%fm9 L 3-09 COS 8 -cage Mfl—a I Cogs. : Sfofi §Cc39€os.9”g““& ' I Case- 3&1?) 0097—9 "COS 9 siné’ t cscB—cotfiz 1+cosc9 She _ l-CoSf-i 1 +50 $9 { ~60 S 9- 9’ “"Crflxgfij i .—-C¢9%LE«L Sim L0 I [—HGOS LC: sin 6(cot 6’ + tan 9) 2 sec 6 3'an 6&8 «kg-"r19 m 9 D" ) - 3‘ _ l :- a g. 9' 09b9 4. $709 (371” . / (303.9 G039'+ gag—(9‘ @0319 -+ SmZ—(SL : ’ a: ‘ Cloga cos 6‘; ...
View Full Document

This note was uploaded on 01/16/2012 for the course MATH 127 taught by Professor Blisinhestiyas during the Fall '11 term at Truckee Meadows Community College.

Page1 / 4

7.3 - for every value of. .r for which both functions are...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online