This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
Unformatted text preview: for every value of. .r for which both functions are defined. Such an eque lion is
referred to as; am identity. An equatirm that not an identity is called :51
conditional equation. Use A1 ebra to Sim 1i Tri onometric EX ressions. RCWI'lte cos2 x+cot2 x+ sin2 x 111 terms Ofcscx . ' “2 3 1 h I 2 , r 1 _ 2‘ '—
CO$X+$mX riCo-i X E HAT-1L I : Swag
2 0V" 1Q
’4— Cor X Z 3 2: C536. Lx‘ =- - 'i- - £4" {5% C‘ZX t’VW “COM ,, 4L:{_t ‘33 COBGQD; C393 8; Sec.(—o):§ec8
LowE—S): win/lo; Co+(v0):'—Co}8 Simplify by rewriting 5m1+ COW—1 over a common denominator.
COS x + $111 x gin!" SEEN (fogx—i (COSX‘FE)
anx (60” H 5 31% )6 Gas x H )
’SIHD'ZX i-#[Co<3x‘——I)(COS‘X.+I )
"‘ (2.st
ginX—‘r’ces’x‘m' — W’F—H ~ 5» ~ 3Cn>§ (60% H 9.04m“; ) (a) Simplify tan ‘9
sec 6 of sine and cosine functions. by rewriting each trigonometric function in terms
tone —j— $26 9
gfn L9 ,3; ‘
Cos 9 605 3
page i
I S {@6- i (b) Show that 1:1“ 66 = Loos—Q by multiplying the numerator and
cos sm . K,‘ _. (9
denominator by l—cost9 5mg - a 113:9
U.\-\i:<3939)Li—C’9393 marge “is ‘ _c:o23/e teas/E» r_- c539 ‘5 MN I *Cog’e)
i . '2. ‘ ___ 1 . —— J i COS 9' I "L535
l C03 8’ _‘ ————— a $an
1 1 Sifie ([241. (c) Simplify + 1-sinu l+sinu
common denominator. (l—fii‘nuMH—Sinu) ’.[_$f bK-4—l ’glifld -: &
1-3fnui)(i+$rinbk) l-3fn1bL by rewriting the expression over a lcoszi/H’P) “wig “ 31 (PF-El;
(d) Simplify —.———l— by factoring. " 38“.
s1nv+cosvsmv Fri 1’—
rib
' r— S {n I? 6 In l/ Establish Identities.
Guidelines for Establishing Identities 1. It is almost always proferable to start with the side containing the more
compiicatocl expression. 2. Rewrite sums or di‘ffcrenceg of quotients as a single quotient. 3. Sometimes; rewriting one side in terms of Sines and cosmos only will help. 4. Alwa keep your goal in mind. As you manipulate one side of the expres~
sion. you must keep in mind the form of the expmssion on the other side. Verify the following identities. 1 l \————+—:————=ZSecx
(secx+tanx) (éecx—tanx l g) .Vl .__"l0/V\X
(chHo x)l§£cx )ay QSQCX
g efx «— to:le . g QCX Rikch
(S! c “Pom )(Secx—iom Y)
Sac x + $QCX—H’ V»!
t See Xll-lOmX) ($0M -—-1LW\X>
' Ar + D; F" in P;
smx = —cosxtan(—_x)
goes): (~—) W I Coax hmv ,‘7 M. anx —;. [3m
1—csc9sin39f63359
l»— ._L. 8:“:ng-
S" 9
Mid-Stnlafl 3— 'v H.
iCO$9 ‘__i__,,‘ gas/209 W I
csc6—sin6’ 9509 ’ . 9‘
t29=—-—~— . C0 sing 479 '— l(:lr12€’
, sip/9 $12?
95.9.; "" S1 ' g‘l‘g- @032
grne -"“’ 1 ’ “‘ ‘~ ~77:
Slfinzg— 3‘“ er- 3312C): 1. ‘C‘QSQEX’J sin2 6—tan6’
cos2 6—cott9 \gyog ‘ ‘7. 89 ‘ Gosefg‘fn‘D—B -" Sffig (COS a" Coo )
«*fl Case - '
KC-Ogb) I 7—
srge C056 _%fm9 L 3-09 COS 8 -cage Mfl—a I Cogs. : Sfofi
§Cc39€os.9”g““& ' I Case- 3&1?) 0097—9 "COS 9
siné’ t
cscB—cotfiz
1+cosc9
She _ l-CoSf-i 1 +50 $9 { ~60 S 9- 9’ “"Crflxgfij
i .—-C¢9%LE«L Sim L0 I
[—HGOS LC: sin 6(cot 6’ + tan 9) 2 sec 6 3'an 6&8 «kg-"r19 m 9 D" ) - 3‘ _ l :- a g. 9' 09b9 4. $709 (371” . / (303.9
G039'+ gag—(9‘ @0319 -+ SmZ—(SL : ’ a: ‘ Cloga cos 6‘; ...
View
Full Document
- Fall '11
- BlisinHestiyas
-
Click to edit the document details