8.3 - 8.3 The Law of Cosines Cam 3: TWO Sidfiifi and the...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 8.3 The Law of Cosines Cam 3: TWO Sidfiifi and the included angle are kmwn (SAS). Case 4: Three sides are RHOWI‘] (SSS). Law of Cosines Far 21 trizmgie with a! b. (t and opposita angle—3 A. B, C, respectively. ’3’; I? " “3 m “‘1‘- ss‘fi“ : {r + b" —- 2gb QUE; :5“ r».- ll % 4:1 2 b5 + at“ (a (:03 C. a sin 8) f 1 ix EC 394: 33 ‘ i i | l b (a) Angie C is acute (13) Angie C is obtuse Law of Cosines Th e RqLu-Irc of mm: Side of 5:: triangle equals the sum of the SLIUE'H'CS 0!" HM: 01: her two Sides I‘ninus Iwicc their product times thc cosine (13'1" their inciucicd anqu Solve the oblique triangles. 1. a=26,b=32,C=110° 7— 2 C4: a+lo #215 003C 9 362%?) 511—— 21 [26 )(32) Cos. HO CZ: 3363.1115‘I% : quw . l 2 | a.) A bZ:G+C—-—30\CCosI' } 3313 3152.1; fichuétff—a 2 ['16)(91'£%)Cosr°> _ [331):L2é)l_(qq=éq)2: ~22. 6%)[W-bq)cos;3 (32.) 7:429? —(L1Mu)l «; Cases r-2(ze) (Lflcé 2. (1:329 5:46, 6:69 3. £726, c:3, A=70° 9)”: Kim?“— leoc COS/5r a1: a aahztwsms so - 6‘12: 2 .68 12-1 /‘”““~ nf—V ‘1 ///.: (1.7- 2 - _ 2 4. A p ane eaves airport A and travels 690 miles to airport B on a bearing ofN42°E.The plane later leaves airport B and travels to airport C 525 miles away on a bearing of Ser. Find the distance from airport A to airport C to the nearest mile. I 13 A ITIOIOI‘iZBd sallbeat leaves Naples. Florida. bound for Key West. 150 miles: away. Maintaining a constant speed of ’15 miles per hour, but encountering heavy crosswith and strong currents. the crew finds, after 4 11-01113. that the sailboat is off C(IJLITSC by 20"“. (a) How far is the sailboat from Key West at. this time? (b) Through what angle should the sailboat turn to correct its course? (Cl HOW much time has been added to the trip because of this? ( Assume that lhc speed remains at 15 miles per hour.) : CH3~5+€3 3 fl ‘ ' I mag-l— @ rl—hu Sail bod iS'AClGMLLLS qfoj‘m Km} (5) I60?— 9e%.eol;—2.lqe)(éq>caslx Cxogfl : w°940€> LL . r- ’ ‘3 ‘ l L C! v-l Curb Q I :r lquoQ 9624' 2300‘} $1511 DZ) ~_r—%Jr/” [email protected]fl-2: 3%;,« kc) (flail —|0lorl LQJvul-lln Eb 4M "l‘flp m hub—low; [foéflmhqéi En Own exlva 6 W“ 3_ wh‘ch will YQ—SLLE'B’Q Ql‘i‘jfd Zhlp‘f‘nfnulox mch ih (1m gpull ES lug—mkle 3): grand -~lt‘N S (5 : I6 E " Lllwt; t, E: U Ll mm t. : 2Q minutth ...
View Full Document

This note was uploaded on 01/16/2012 for the course MATH 127 taught by Professor Blisinhestiyas during the Fall '11 term at Truckee Meadows Community College.

Page1 / 4

8.3 - 8.3 The Law of Cosines Cam 3: TWO Sidfiifi and the...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online