10.4-one - ' 4.4 The Hyperbola A hyperbola is the...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ' 4.4 The Hyperbola A hyperbola is the collection of all points in the plane, the difference of those distances from two fixed points, called the foci, is a constant. “ilru imp. Carriages Hm foe} is Calieoi sine 'iTQmsvevse axis. midpofnvi fo-Jnd‘ry Hm Conjugate ax's Transverse axis *Foei E‘s «imaginiqr e; he law-armhole. m Um). "ihTDUeSI-i “'H'u; Camiev amd Pevpmdc‘celqr « 0 Ha +‘romsverrse 6005—3 TS: aim Cpn‘wéah axis. Tia h pevboler has "iwo SePavo‘tid Ctu'wis Coiled BTGMICLQ/ ‘i’iuuj mfi-qmmea‘m’e W--'Y- +0 VHUL 'WSVOJYSL art‘s/Cory).qu 1. Analyze Hygerbolas with Center at the Origin ax“ and Why. The +000 Poi‘nis 0-? y tinimrsecigm 0-? W QU-nci «HAIL Transverse axis HWSVQYSQ axis, Gert Fi . F2={C.0)X F2 P= My) din. P) d(F1.P) — d(F3. P) = :i:2a Equation of a Hyperbola Center at (O, 0) Transverse Axis along the x—Axis An equation of the hyperbola with center at (O, O). foci at (—C. 0) and (c. 0). and vertices at (ma. 0) and (a. 0) is V1 = (-3.0) Transverse axis The transverse axis is the x—axis. Equation of a Hyperbola; Center at (O, 0); Transverse Axis along the y-Axis An equation of the hyper-bola with center at (0. 0). foci at (0. Mc) and (0. c). and vertices at (0. —a) and (0. a) is The transverse axis is the y—axis. 2. Find the Asymptotes of a Hyperbola Asymptotes of a Hyperbola I )7 . The hyperbola —, - = 1 has; the two 0131qu asymploEes a- _ Asymptotes of a Hyperbola The hyperbola — Z—; = 1 has the two oblique asymptotes a- _ ASWFJro-{reg PW'DN; (£2 in £07m a'h"tm 63130126" W m O~$kjwi>3tol15 6L Pwkbota. OUer YLO+ Dow): "HAIL Mfibob/ do Scam/1L 0L8 CL {01 Ck HPQ'TIDOIQ. 3. Analyze Hyperbolas with Center at (h, k} HYPERBOLAS WITH CENTER AT (11, R) AND TRANSVERSE AXIS PARALLEL TO A COORDINATE AXIS \— — ——wr I\ I] l I 1 Transverse F1V \ ’ V F2 axis Transverse Axis Foci Vertices Equation Asymptotes Parallel to the 2 2 x — h — k x-axis (hick) {hia,k) l zl—(yb2)=1. b1=c2—02 y—k:i%(x—h) _ A Parallel to the 2 2 — k x - h y-axis (lukic) (h.kia) (y )fil b2) :1. laz=c2~lri2 y—k=;tg(x—h) \ y f y Transverse \ / \ / \ (h. k) / ><Y m) Find em Wm 76w (ML ksza bola. mama, 6.me (0,0) Foam (5,?) vm+ax (he), Xlfl_ HLnt bl: 8:41;" _.__.— __l__...r-— (11' E3; ...
View Full Document

Page1 / 4

10.4-one - ' 4.4 The Hyperbola A hyperbola is the...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online