{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter15Sec9ShowCode

# Chapter15Sec9ShowCode - Initialization Cells(Code Needed...

This preview shows pages 1–4. Sign up to view the full content.

Initialization Cells (Code Needed for Most Plot3D Statements) In[1390]:= ticks @ min_, max_ D : = Join @ Table @8 i,If @ i 0, ,Style @ i,12 DD , 8 0.01,0 << , 8 i,Ceiling @ min D ,Floor @ max D , 2 <D , H * Numbered ticks * L Table @8 j, , 8 0.01,0 << , 8 j,Round @ min D ,Round @ max - 1 D ,1 <DD H * Un - numbered ticks * L H * 2D Options * L SetOptions @ Plot, ImageSize fi 350, AxesOrigin fi 8 0,0 < , AspectRatio fi 1, AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks D ; H * 3D Options * L SetOptions @ Plot3D, ImageSize fi 600, BoxRatios fi 1,Boxed fi False, AxesOrigin fi 8 0,0,0 < , AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks, Mesh fi None, ViewPoint fi 8 2,0.9,1 < , ViewVertical fi 8 0,0,1 < D ; SetOptions @ ContourPlot3D, ImageSize fi 600, BoxRatios fi 1,Boxed fi False, AxesOrigin fi 8 0,0,0 < , AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks, Mesh fi None, ViewPoint fi 8 2,0.9,1 < , ViewVertical fi 8 0,0,1 < D ; SetOptions @ ParametricPlot3D, ImageSize fi 600, BoxRatios fi 1,Boxed fi False, AxesOrigin fi 8 0,0,0 < , AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks, Mesh fi None,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
ViewPoint fi 8 2,0.9,1 < , ViewVertical fi 8 0,0,1 < D ; SetOptions @ RegionPlot3D, ImageSize fi 600, BoxRatios fi 1,Boxed fi False, AxesOrigin fi 8 0,0,0 < , AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks, Mesh fi None, ViewPoint fi 8 2,0.9,1 < , ViewVertical fi 8 0,0,1 < D ; SetOptions @ SphericalPlot3D, ImageSize fi 600, BoxRatios fi 1,Boxed fi False, AxesOrigin fi 8 0,0,0 < , AxesStyle fi Directive @ Medium, Bold D , Ticks fi ticks, Mesh fi None, ViewPoint fi 8 2,0.9,1 < , ViewVertical fi 8 0,0,1 < D ; Chapter 15: Multiple Integrals 2 Chapter15Sec9.nb
Section 15.9: Triple Integrals in Spherical Coordinates ª Definition Consider a point in rectangular coordinates H x , y , z L . This point can be described using spherical coordinates as H Ρ , Θ , Φ L where L Ρ is the length of the vector X x , y , z \ , that is Ρ = X x , y , z \/ = x 2 + y 2 + z 2 . Hence, Ρ ‡ 0. L Θ is the angle measured counterclockwise in the xy -plane starting from the x -axis. L Φ is the angle measured from the positive z -axis to the vector X x , y , z \ and we assume that 0 £ Φ £ Π . L Note that r = Ρ sin H Φ L L Note that x = r cos H Θ L = Ρ sin H Φ L cos H Θ L and x = r sin H Θ L = Ρ sin H Φ L sin H Θ L L Note that z = Ρ cos H Φ L L Finally, the distance formula gives us Ρ 2 = x 2 + y 2 + z 2 . In[1397]:= myRho = 2; myTheta = Pi 3; myPhi = Pi 4; Show @ Plot3D @ 0, 8 x, 0, 2 < , 8 y, 0, 2 < , PlotRange fi 8 0,2 < , PlotStyle fi Directive @ Opacity @ 0 DD , Mesh fi None,BoundaryStyle fi None D , Graphics3D @8 PointSize @ Large D ,Point @ 8 myRhoSin @ myPhi D Cos @ myTheta D , myRhoSin @ myPhi D Sin @ myTheta D , myRhoCos @

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}