{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter1Section3

# Chapter1Section3 - 1.3 Slope Fields and Solution Curves...

This preview shows pages 1–2. Sign up to view the full content.

1.3: Slope Fields and Solution Curves Basic Definitions Consider the differential equation dy dx = f H x , y L . This represents the slope through the point ( x, y ). A direction (or slope) field is generated by drawing a short line segment through each point ( x, y ) having slope given by f H x , y L . Theorem: Existance and Uniqueness of Solutions Let dy dx = f H x , y L , y H a L = b . Suppose f H x , y L and the partial derivatife of f with respect to y , denoted D y f H x , y L = y f H x , y L are both continuous on some rectangle R in the x - y plane containing the point H a , b L . Then, for some open interval I containing a , the initial value problem has a unique solution on I . Example Suppose dy dx = - y . A. Explore the existance and uniqueness theorem. B. Show that y H x L = ce - x is a solution for all x ˛ R . Example Suppose dy dx = 2 y , y H 0 L = 0. A. Explore the existance and uniqueness theorem. B. Show that y 1 H x L = 0 and y 2 H x L = x 2 are solutions.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern