HW9_Practice_Problems_Solutions

HW9_Practice_Problems_Solutions - ECE 2030 E/F Practice...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 2030 E/F Practice Problems - Solutions (1) Textbook #5-14 The State Diagram for a sequential circuit is given in Fig.5-40 (pg.284). (a) Find the State Table . (b) Make 2-bit state assignments, and write the encoded state table . (c) Find the optimized circuit using D flip-flops, NANDs and Inverters. Solution: (a) From the given state diagram, we can construct a state table by first listing all the possible combinations of present states and input combinations, then for each of these combinations use the diagram to find the next states and output value(s). P.S. Inputs(X1,X2) N.S. Output(Z) P.S. Inputs(X1,X2) N.S. Output(Z) A 0 A C 0 A 1 A 0 1 B C 0 1 A A 1 B 1 C 1 C 1 A 1 1 A C 1 1 C B 0 A D 0 C 1 B 0 1 A D 0 1 B 1 B 1 D 1 D 1 B B 1 1 D 1 D 1 1 C 1 (b) We use the most obvious assignment of 2-bit codes (not unique), as follows: A(Q1,Q2)=(0,0) B(Q1,Q2)=(0,1) C(Q1,Q2)=(1,0) D(Q1,Q2)=(1,1) Replace the symbols in the table of part (a) with these values to get : P.S. Inputs(X1,X2) N.S. Output(Z) P.S. Inputs(X1,X2) N.S. Output(Z) 00 0 00 10 0 00 1 00 0 1 01 10 0 1 00 00 1 01 1 10 1 10 1 00 1 1 00 10 1 1 10 01 0 00 11 0 10 1 01 0 1 00 11 0 1 01 1 01 1 11 1 11 1 01 01 1 1 11 1 11 1 1 10 1 (c) To optimize the NS and Output logic, we construct three four-variable K-maps using the data in the table from part (b), first listing the minterms for each function: D1 = Q1+(Q1,Q2,X1,X2) = m(6,7,10,11,12,15) D2 = Q2+(Q1,Q2,X1,X2) = m(1,2,6,7,13,14) Z = m(2,6,7,8,10,12,13,15) A B 11 D 00/0, 11/0 10/1, 11/0 01/0, 10/1 00/0,01/0 00/1, 01/0 00/1,11/1 10/1, 11/1 Format = X1X2/Z 01/1, 10/0 A B 11 D 00/0, 11/0 10/1, 11/0 01/0, 10/1 00/0,01/0 00/1, 01/0 00/1,11/1 10/1, 11/1 Format = X1X2/Z 01/1, 10/0 When these functions are minimized using K-maps (shown below), we get: D1 = Q1+ = X1Q1Q2 + X1Q1Q2 + X1X2Q2 + X1X2Q1Q2 Or : = X1Q1Q2 + X1Q1Q2 + X1X2Q1 + X1X2Q1Q2 D2 = Q2+ = X1X2Q1Q2 + X1X2Q1Q2 + X1X2Q1 + X1X2Q2 + X1Q1Q2 Z = X1X2Q1 + X1X2Q2 + X1Q1Q2 + X2Q1Q2 Or : = X1X2Q2 + X1Q1Q2 + X2Q1Q2 + X1X2Q1 Normally these SOP solutions would be implemented using AND gates followed by OR gates. However, if we insert a pair of inversions between the two types of gates, we can change these solutions to all NAND gates as follows: Z = X1X2Q1 + X1X2Q2 + X1Q1Q2 + X2Q1Q2 1 X1 X2 Q1 5 2 X1 X2 Q2 3 X1 Q1 Q2 4 X2 Q1 Q2 Q1 Q1Q2 X1X2 00 00 01 11 10 X1 m0 m1 m3 m2 m4 m5 m7 m6 01 1 11 10 m12 m13 m15 m14 m8 m9 m11 m10 Q2 1 1 1 1 1 1 1 X2 Z = X1X2Q1 + X1X2Q2 + X1Q1Q2 + X2Q1Q2 1 X1 X2 Q1 5 2 X1 X2 Q2 3 X1 Q1 Q2 4 X2 Q1 Q2 Q1 Q1Q2 X1X2 00 00 01 11 10 X1 m0 m1 m3 m2 m4 m5 m7 m6 01 1 11 10 m12 m13 m15 m14 m8 m9 m11 m10 Q2 1 1 1 1 1 1 1 X2 D1 = X1Q1 Q2 + X1Q1Q2 + X1X2Q1 + X1X2Q1Q2 1 X1 Q1...
View Full Document

This note was uploaded on 01/16/2012 for the course ECE 2030 taught by Professor Wolf during the Fall '07 term at Georgia Institute of Technology.

Page1 / 8

HW9_Practice_Problems_Solutions - ECE 2030 E/F Practice...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online