Solution of a DE by Laplace Transforms IVP

# Solution of a DE by Laplace Transforms IVP - If s=1 C= 2 1...

This preview shows pages 1–2. Sign up to view the full content.

Differential Equations Second Quarter SY 0506 ____________________________________________________________________________________________________________ Silva, Alviso and Llacuna – Mathematics Department, MIT 174 Lesson 35 Solution of a Differential Equation by Laplace Transforms (Initial Value Problems) Specific Objectives: At the end of the lesson, the students are expected to: Evaluate differential equations by Laplace transforms The Laplace Operator will transform a linear D.E. with constant coefficients into an algebraic equation in the transformed function (Raindille + Bedient). This method is easily used if the initial conditions are given. Ex. Solve t e y y y 3 2 ' 3 ' ' = + ; 0 ) 0 ( ' ) 0 ( = = y y Find the laplace transforms of both sides. } { } { 2 } ' { 3 } ' ' { 3 t e L y L y L y L = + 3 1 } { 2 )] 0 ( } { [ 3 )] 0 ( ' ) 0 ( [ } { 2 = + + s y L y y sL y sy y L s 3 1 } { 2 ) 0 ( 3 } { 3 0 ) 0 ( } { 2 = + + s y L y sL s y L s 3 1 } { ) 2 3 ( 2 = + s y L s s ) 2 3 )( 3 ( 1 } { 2 + = s s s y L } ) 2 3 )( 3 ( 1 { 2 1 + = s s s L y By Partial Fractions: 1 2 3 ) 1 )( 2 )( 3 ( 1 + + = s C s B s A s s s ) 2 )( 3 ( ) 1 )( 3 ( ) 1 )( 2 ( 1 + + = s s C s s B s s A If s=3, 2 1 = A If s=2, B=-1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: If s=1, C= 2 1 Differential Equations Second Quarter SY 0506 ____________________________________________________________________________________________________________ Silva, Alviso and Llacuna – Mathematics Department, MIT 175 Thus, } 1 2 1 2 1 3 2 1 { 1 − + − − − − = − s s s L y t t t e e e y 2 1 2 1 2 3 + − = Seatwork: Perform the indicated operations: 1. ) 3 sin( 5 ' 2 ' ' t y y y = + + ; 1 ) ( ' , 1 ) ( − = = y y Ans:       + + − − + = − − − ) 2 sin( 2 3 ) 2 cos( ) 3 sin( 3 2 ) 3 cos( 26 3 ) 2 cos( ) ( 2 t e t e t t t e t y t t 2. t y y sin 10 3 ' = + ; ) ( = y Ans: t t e t sin 3 cos 3 + − − Homework: Perform the indicated operations: 1. t y y = − ' ' ; 1 ) ( ' , 1 ) ( = = y y 2. t y y y = + + 10 ' 5 ' ' ; 1 ) ( ' ) ( = = y y...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

Solution of a DE by Laplace Transforms IVP - If s=1 C= 2 1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online