lec31 - MIT OpenCourseWare http://ocw.mit.edu 18.01 Single...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms . Lecture 31 18.01 Fall 2006 Lecture 31: Parametric Equations, Arclength, Surface Area Arclength, continued Example 1. Consider this parametric equation: x = t 2 y = t 3 for t 1 x 3 = ( t 2 ) 3 = t 6 ; y 2 = ( t 3 ) 2 = t 6 = x 3 = y 2 = y = x 2 / 3 x 1 ds dy dx ds dy dx Figure 1: Infinitesimal Arclength. ( ds ) 2 = ( dx ) 2 + ( dy ) 2 ( ds ) 2 = (2 tdt ) 2 + (3 t 2 dt ) 2 = (4 t 2 + 9 t 4 )( dt ) 2 ( dx ) 2 ( dy ) 2 t =1 1 1 Length = ds = 4 t 2 + 9 t 4 dt = t 4 + 9 t 2 dt t =0 1 = (4 + 9 t 2 ) 3 / 2 = 1 (13 3 / 2 4 3 / 2 ) 27 27 Even if you cant evaluate the integral analytically, you can always use numerical methods. 1 Lecture 31 18.01 Fall 2006 Surface Area (surfaces of revolution) y ds a b y x Figure 2: Calculating surface area ds (the infinitesimal curve length in Figure 2) is revolved a distance...
View Full Document

This note was uploaded on 01/18/2012 for the course MATH 18.01 taught by Professor Brubaker during the Fall '08 term at MIT.

Page1 / 5

lec31 - MIT OpenCourseWare http://ocw.mit.edu 18.01 Single...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online