f09final

# f09final - e 1 10 8 What is the absolute maximum value of f...

This preview shows pages 1–7. Sign up to view the full content.

Name: Math 113 Final Exam Shonkwiler I hereby accept the Haverford Honor Code, realizing that it is my duty to uphold the Honor Code and the concepts of personal and collective responsibility upon which it is based. Signature: Instructions: You have two hours to complete this exam. You may consult one hand-written sheet of notes, but you may not use any other notes, books, or electronic devices (e.g. calculators, computers). 1. What are the domain and range of the function f ( x ) = 1 + e x 1 - e x ? 2. Suppose g ( x ) = ln ± 1 x + 1 ² . What is g - 1 ( x )? For what values of x is g - 1 ( x ) deﬁned? 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. What is the equation of the line tangent to the graph of y 3 + 3 x 2 y 2 + 2 x 3 = 4 at the point (1 , - 1)? 4. Evaluate the limit lim x 0 1 - cos x x 2 + x . 2
5. The volume of a cube is increasing at a rate of 10 cm 3 /min. How fast is the surface area increasing when the length of an edge is 10 cm? 6. Find the maximum and minimum values, inﬂection points and asymptotes of y = ln( x 2 + 1) and use this information to sketch the graph. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
7. Use an appropriate linearization to approximate

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e 1 / 10 . 8. What is the absolute maximum value of f ( x ) = x 1 /x for x > 0? 4 9. A stock market analyst sold a monthly newsletter to 320 subscribers at a price of \$10 each. She discov-ered that for each \$0.25 increase in the monthly price of the newsletter, she would lose 2 subscriptions. If she sets the price of the newsletters to bring in the greatest total monthly revenue, what will that revenue be? 10. Does log 3 x grow faster than, slower than, or at the same rate as log 10 x ? 5 11. Suppose the velocity of a particle is given by v ( t ) = 3 cos t + 4 sin t. If the particle starts (at time 0) at a position 7 units to the right of the origin, what is the position of the particle at time t ? 12. Evaluate the deﬁnite integral Z π/ 6 2 + cos 3 θ cos 2 θ dθ. 6 13. Evaluate Z csc r cot r dr. 14. Let g ( x ) = Z x 2 1 sin t √ t dt. What is the derivative of g ? 7...
View Full Document

{[ snackBarMessage ]}

### Page1 / 7

f09final - e 1 10 8 What is the absolute maximum value of f...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online