{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

18-01F07-L14 - MIT OpenCourseWare http/ocw.mit.edu 18.01...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus, Fall 2007 Please use the following citation format: David Jerison, 18.01 Single Variable Calculus, Fall 2007 . (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus, Fall 2007 Transcript – Lecture 14 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation, or to view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. PROFESSOR: What we're going to talk about today is a continuation of last time. I want to review Newton's method because I want to talk to you about its accuracy. So if you remember, the way Newton's method works is this. If you have a curve and you want to know whether it crosses the axis. And you don't know where this point is, this point which I'll call x here, what you do is you take a guess. Maybe you take a point x0 here. And then you go down to this point on the graph. and you draw the tangent line. I'll draw these in a couple of different colors so that you can see the difference between them. So here's a tangent line. It's coming out like that. And that one is going to get a little closer to our target point. But now the trick is, and this is rather hard to see because the scale gets small incredibly fast, is that if you go right up from that, and you do this same trick over again. That is, this is your second guess, x1, and now you draw the second tangent line. Which is going to come down this way. That's really close. You can see here on the chalkboard, it's practically the same as the dot of x. So that's the next guess. Which is x2. And I want to analyze, now, how close it gets. And just describe to you how it works. So let me just remind you of the formulas, too. It's worth having them in your head. So the formula for the next one is this. And then the idea is just to repeat this process. Which has a fancy name, which is in algorithms, which is to iterate, if you like. So we repeat the process. And that means, for example, we generate x2 from x1 by the same formula. And we did this last time. And, more generally, the n + 1st is generated from the nth guess, by this formula here. So what I'd like to do is just draw the picture of one step a little bit more closely. So I want to blow up the picture, which is above me there. That's a little too high. Where are my erasers? Got to get it a little lower than that, since I'm going to depict everything above the line here. So here's my curve coming down. And suppose that x1 is here, so this is directly above it is this point here. And then as I drew it, this green tangent coming down like that. It's a little bit closer, and this was the place, x2, and then here was
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern