Solutions1 - sec 3 x tan x dx = Z sec 2 x sec x tan x dx =...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
MATH 2007B Test 1 Solutions October 3, 2011 [Marks] 1. Evaluate Z 2 x ( x 2 +1) 23 dx [2] Solution: u = x 2 +1 Z 2 x ( x 2 +1) 23 dx = Z u 23 du = u 24 24 + C = ( x 2 +1) 24 24 + C . 2. Evaluate Z x 3 3 x 1( x 2 1) dx [4] Solution: u = x 3 3 x 1 Z x 3 3 x 1( x 2 1) dx = 1 3 Z x 3 3 x 1(3 x 2 3) dx = 1 3 Z udu = 2 9 u 3 / 2 + C = 2 9 ( x 3 3 x 1) 3 / 2 + C . 3. Evaluate Z 4 xe 2 x dx [4] Solution: Z 4 xe 2 x dx =2 xe 2 x Z 2 e 2 x dx =2 xe 2 x e 2 x + C , integrating by parts. 4. Evaluate Z ( x 2 +2)cos( x ) dx [4] Solution: Z ( x 2 +2)cos( x ) dx =( x 2 +2)sin( x ) Z 2 x sin( x ) dx =( x 2 +2)sin( x )+2 x cos( x ) Z 2cos( x ) dx =( x 2 +2)sin( x )+2 x cos( x ) 2sin( x )+ C , integrating by parts twice. 5. Evaluate Z sin 5 ( x )cos 3 ( x ) dx [4] Solution: Z sin 5 ( x )cos 3 ( x ) dx = Z sin 5 ( x )cos 2 ( x )cos( x ) dx = Z sin 5 ( x )[1 sin 2 ( x )] cos( x ) dx = Z [sin 5 ( x ) sin 7 ( x )] cos( x ) dx = Z u 5 u 7 du = u 6 6 u 8 8 + C = sin 6 ( x ) 6 sin 8 ( x ) 8 + C , where u =s in( x ). 6. Evaluate Z tan 4 ( x )sec 4 ( x ) dx [4] Solution: Z tan 4 ( x )sec 4 ( x ) dx = Z tan 4 ( x )sec 2 ( x )sec 2 ( x ) dx = Z tan 4 ( x )[tan 2 ( x )+1]sec 2 ( x ) dx = Z [tan 6 ( x )+tan 4 ( x )] sec 2 ( x ) dx = Z u 6 + u 4 du = u 7 7 + u 5 5 + C = tan 7 ( x ) 7 + tan 5 ( x ) 5 + C , where u =tan( x
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 7. Evaluate Z sec 3 ( x )tan( x ) dx [4] Solution: Z
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sec 3 ( x ) tan( x ) dx = Z sec 2 ( x ) sec( x ) tan( x ) dx = Z u 2 du = u 3 3 + C = sec 3 ( x ) 3 + C , where u = sec( x ). Alternatively, Z sec 3 ( x ) tan( x ) dx = Z sin( x ) cos 4 ( x ) dx = − Z 1 u 4 du = u-3 3 + C = 1 3 cos 3 ( x ) + C = sec 3 ( x ) 3 + C , where u = cos( x ). 8. Evaluate Z 4 cos 4 ( x ) dx [4] Solution: Z 4 cos 4 ( x ) dx = Z 4 ± 1 + cos(2 x ) 2 ² 2 dx = Z 1 + 2 cos(2 x ) + cos 2 (2 x ) dx = Z 1 + 2 cos(2 x ) + 1 + cos(4 x ) 2 dx = Z 3 2 + 2 cos(2 x ) + 1 2 cos(4 x ) dx = 3 2 x + sin(2 x ) + 1 8 sin(4 x ) + C ....
View Full Document

This note was uploaded on 01/18/2012 for the course MATH 2007 taught by Professor S.melkonian during the Fall '11 term at Carleton CA.

Page1 / 2

Solutions1 - sec 3 x tan x dx = Z sec 2 x sec x tan x dx =...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online