chap11sec6

# chap11sec6 - 11.6 Absolute Convergence and the Ratio and...

This preview shows pages 1–2. Sign up to view the full content.

11.6 Absolute Convergence and the Ratio and Root Tests Definition A series  n a  is called  absolutely convergent  if the series of absolute values  n a  is convergent. If the series  n a  has only positive terms then  | | n n a a = . We have seen that the alternating harmonic series   1 1 ( 1) n n n - = -   is convergent. However, it is not absolutely convergent  because   1 1 1 ( 1) 1 n n n n n - = = - =   is   the   harmonic   series   and   is   divergent.   So   we   would   say   that   1 1 ( 1) n n n - = -   is  conditionally convergent because it is convergent but not absolutely convergent. n a  is  conditionally convergent  if it is convergent but not absolutely convergent. Theorem:  If a series  n a is absolutely convergent, then it is convergent. Example:  Determine whether the series is absolutely convergent, conditionally convergent or divergent.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## chap11sec6 - 11.6 Absolute Convergence and the Ratio and...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online