{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chap11sec10

# chap11sec10 - 11.10 Taylor and Maclaurin Series...

This preview shows pages 1–2. Sign up to view the full content.

11.10 Taylor and Maclaurin Series In this section we will study a general procedure for deriving the power series of a function that has derivatives of all orders.  The following theorem gives the form that  every (convergent)  power series must take. The Form of a Convergent Power Series If   f   is represented by a power series   0 ( ) ( ) n n n f x c x a = = -   for all   x   in an open interval containing   a   then  ( ) ( ) ! n n f a c n =   and   ( ) 2 3 0 ( ) ( ) '( )( ) ''( )( ) '''( )( ) ( ) ( ) ! 0! 1! 2! 3! n n n f a f a f a x a f a x a f a x a f x x a n = - - - = - = + + + + L The series is called the  Taylor Series  of the function f  at a (or centered at a). If a=0, then the series is the  Maclaurin Series  for f. ( ) 2 3 0 (0) (0) '(0) ''(0) '''(0) ( ) ! 0! 1! 2! 3! n n n f f f x f x f x f x x n = = = + + + + L A function that is equal to the sum of its Taylor Series is called  analytic. Guidelines for Finding a Taylor Series (1) Differentiate f(x) several times and evaluate each derivative at x=a. Try to recognize a pattern in these numbers. (2) Use the sequence developed in the first step to form the Taylor coefficients  ( ) ( ) ! n n f a c n =  and determine the interval of  convergence for the resulting power series 2 3 ''( ) '''( ) ( ) '( )( ) ( ) ( ) 2! 3!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}