{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chap12sec5

# chap12sec5 - 12.5 Equations of Lines and Planes P 0 x0 y0...

This preview shows pages 1–2. Sign up to view the full content.

12.5 Equations of Lines and Planes A line  L  is determined by a point  ( 29 0 0 0 0 , , P x y z  on L and the direction of L. The direction of a line is described by a  vector. v r  - vector parallel to L ( , , ) P x y z  - an arbitrary point on L 0 , r r r r  - position vectors of P 0  and P (representation vectors) a r  - vector with representation  0 P P uuur Triangle Law for vector addition gives  0 r r a = + r r r a r  and  v r  are parallel and there is a scalar  t  such that  a tv = r r . 0 r r tv = + r r r   is the  vector equation of L. Each value of the parameter  t  gives the position vector  r r  of a point on L. 0 t  corresponds to points on L on one side of P 0 . 0 t <  corresponds to points on L on the other side of P 0 . v r : vector that gives the direction of L , , v a b c = r   is the direction of L in component form from which we can get  , , tv ta tb tc = r . 0 0 0 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

chap12sec5 - 12.5 Equations of Lines and Planes P 0 x0 y0...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online