chap7sec2

# chap7sec2 - = NOTE sin cos cos sin axdx ax c axdx ax c a a...

This preview shows pages 1–2. Sign up to view the full content.

7.2 Trigonometric Integrals Used to integrate certain combinations of trigonometric functions - especially when ordinary substitution will  not work. I. Strategy for evaluating integrals of the form   sin cos m n x x dx z   (A)  If n is odd , save  cos x  and use the substitutions u x x x = = - sin cos sin 2 2 1 Example:    4 3 sin cos x xdx (B)  If m is odd , save  sin x  and use the substitutions: sin cos cos 2 2 1 x x u x = - = Example:  3 sin xdx C)  Both m and n are even , use half-angle identities: 2 2 1 1 2 2 2 2 1 1 2 2 1 2 sin (1 cos 2 ) sin (1 cos 2 ) cos (1 cos 2 ) cos (1 cos 2 ) sin cos sin 2 x x ax ax x x ax ax x x x = - = - = + = +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = NOTE: sin cos cos sin axdx ax c axdx ax c a a =- + = + z z 1 1 Example: 2 2 2 sin cos x xdx π ∫ II. Strategy for Evaluating tan sec m n x xdx z (A) If n is even save a 2 sec x and use these substitutions. 2 2 sec 1 tan tan x x u x = + = Example: 4 2 4 tan sec x xdx π ∫ (B) If m is odd save sec tan x x and use these substitutions. 2 2 tan sec 1 sec x x u x = - = Example: 5 3 tan sec x x dx ∫ Also: sec ln sec tan tan ln sec xdx x x C xdx x C = + + = + z z sec 2 x...
View Full Document

## This note was uploaded on 01/20/2012 for the course MATH 2057 taught by Professor Estrada during the Fall '08 term at LSU.

### Page1 / 2

chap7sec2 - = NOTE sin cos cos sin axdx ax c axdx ax c a a...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online