chap7sec4

chap7sec4 - 7.4 Integration of Rational Functions by...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
7.4 Integration of Rational Functions by Partial Fractions Partial fraction decomposition is the reversal of combining fractions. A fraction broken down into its component parts is much easier to integrate. In fact, it may not even be possible to integrate  without the decomposition taking place. There are four cases considered in this section, we will only look at the first two. To apply the techniques of partial fraction decomposition, the degree of the numerator must be less than the degree of the  denominator. If this is not the case, you must perform long division before the decomposition process can proceed. Consider :   ( ) ( ) ( ), ( ) are polynomials. ( ) P x f x P x Q x Q x = CASE I - Q(x) is a product of distinct linear factors. In this case, you will set up a fraction for each factor of the denominator. 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/20/2012 for the course MATH 2057 taught by Professor Estrada during the Fall '08 term at LSU.

Page1 / 3

chap7sec4 - 7.4 Integration of Rational Functions by...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online