chap7sec7

chap7sec7 - 7.7 Approximate Integration

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
7.7 Approximate Integration If you need to find a definite integral when it is impossible to find an antiderivative or when a function arises from a collection   of data, how do you go about finding the value of the definite integral? For example, 2 1 0 x e dx  can’t be calculated exactly through the various techniques of integration that we have been studying.  Riemann sums were studied earlier in this text as a method of finding an approximation for a definite integral. Any Riemann  sum can be used to evaluate a definite integral. To do this you must calculate a left endpoint approximation or a right endpoint  approximation. Look at Figure 1 on page 512. Another way to approximate a definite integral is with the  Midpoint Rule .  (Page 512). [ ] ( 29 [ ] 1 2 1 1 ( ) ( ) ( ) ( ) - where = 1 and midpoint of , 2 b n n a i i i i i f x dx M x f x f x f x b a x n x x x x x - - = ∆ + + + = + = L
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/20/2012 for the course MATH 2057 taught by Professor Estrada during the Fall '08 term at LSU.

Page1 / 5

chap7sec7 - 7.7 Approximate Integration

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online