chap7sec8 - 7.8 Improper Integrals

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
7.8 Improper Integrals In this section we will be looking at definite integrals where (1) the interval is infinite and (2) the function is unbounded (an  infinite discontinuity). These are called  improper integrals. Type 1: Infinite Integrals - Definition on page 524. We can use an integral to find area under a curve over a closes interval, but what about an infinite interval? It may be possible  to evaluate the area and determine that the integral is  convergent.   However, it may not be possible to find an area. In this  case the integral is  divergent. We will examine   Example 1   from the text. Why does one function converge and the other does not. These functions seem to be  very similar. Limits are used to calculate improper integrals. So, why do we get different results for such similar functions? 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/20/2012 for the course MATH 2057 taught by Professor Estrada during the Fall '08 term at LSU.

Page1 / 2

chap7sec8 - 7.8 Improper Integrals

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online