Sol-165E3-F2011

Sol-165E3-F2011 - MA 165 Exam 3 01 Fall 2011 NAME...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 165 Exam 3 01 Fall 2011 NAME earn-tress 10—DIGIT PUID REC. INSTR. REC. TIME LECTURER INSTRUCTIONS: 1. There are 8 different test pages (including this cover page). Make sure you have a complete test. 2. Fill in the above items in print. Also write your name at the top of pages 2—8. 3. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers in this test booklet. No partial credit will be given. 4. No books, notes, calculators or any electronic devices may be used on this exam. 5. Each problem has 8 points assigned. 4 points are given for taking the exam. The maximum possible score is 96+4=100 points. 6. Using a #2 pencil, fill in each of the following items on your scantron sheet: (a) On the top left side, write your name (last name, first name), and fill in the little circles. (b) On the bottom left side, under SECTION NUMBER, put 0 in the first column and then enter the 3—digit section number. For example, for section 016 write 0016. Fill in the little circles. (c) On the bottom, under TEST/ QUIZ NUMBER, write 01 and fill in the little circles. (d) On the bottom, under STUDENT IDENTIFICATION NUMBER, write in your 10—digit PUID, and fill in the little circles. (6) Using a #2 pencil, put your answers to questions 1-12 on your scantron sheet by filling in the circle of the letter of your response. Double check that you have filled in the circles you intended. If more than one circle is filled in for any question, your response will be considered incorrect. Use a #2 pencil. 7. After you have finished the exam, hand in your scantron sheet @131 your test booklet to your recitation instructor. (8 pts) (8 pts) MA 165 Exam 3 01 Fall 2011 Name: Page 2/7 1. Find the absolute maximum and absolute minimum of the function f(x) = 3m4 — 4033 — 12.ch2 +1 on the interval [~2, 3], without specifying the value of a: which attains the absolute maximum or absolute minimum. ‘95 A. absolute max 33 absolute min —31 §/(x):12x3.. 12 )3. 24x : 1 2X ()6: x _ 2) B. absolute max 28 absolute min —4 I 12X OH 1) [702) C. absolute max 28 absolute min —31 §?X):O : x:-1) 0/ 2. D. absolute max 33 absolute min 1 {6.1) =‘ 3 +4? ,2 +1 ; - 4- E. NO absolute max absolute min —35 {1):3‘JQ —-4-8’IZ ~1214+L . ’ 2 are“ — 32 ~12"; +1 vaué'aba mm {(-2}: 3-16— 4-(va)~1z.4+i :43 1- 32,—4.8 +4 :33 {(3) I "3.81.. +27%»? +1 : 24.3 [email protected]~fifl8+1 $23 é,” 0):)! may 2. If f = scarf 1, then find the values of a: at which f has a local maximum or a local minimum. Dammit: X23120 {Gd 3 Xi)“ q: 2 A. local max at m = 2 local min at a: = 0 g for] ; W :2, fig-‘32; B. local max at a: = 1 local min at a: z 2 x4 5% C. local max at x = 0 local min at a: = 2 H’s/ices ; ><:0, x21 local min atazzO NO looal min D. local max at a: z 1 E. local max at x = 0 (8 pts) (8 pts) MA 165 Exam 3 01 Fall 2011 Name: 3. If 9(33) : 4:123 — 33:4, which of the following statements are true? (1) g is decreasing on (1,00). (2) g has a local minimum at a: = 0. (3) The graph of g is concave downward on (——oo, 0). 4 :4xfi-a 3X (3”) “E A- (1), (2); and (3) ( gm V 1 I? " We)” i” - fl" (1 ’0 B. (3) only () bf; W: l— + 'l 1' giiiiiagw:w;:~;;w“§ C. (1) only 0 4— (1) Q) T a. D. (1) and (2) only ) ()7 mot law. a ('2- ? $613. (1) and (3) only ’3 (or): May—aw =.4<2><(2—3>(), // ‘___ gm; ~ ~ -_.._..9::1::$;1;;; or, o a V (53;) in {rug 3 4. Suppose that the second derivative of the function f is given by ‘5‘” 3, r-—~~w«~l me) = <x+3>4<m+1>3<m 7 1>ng)7<m —. 5). How many inflection points does the graph of y = f have ? A. None w to, ‘ ; + —~«0+= gm WNW gee—ea B_ 1 -1 3 C. 2 961). 3 E4 Page 3/7 MA 165 (8 pts) Exam 3 01 5. If f’(a:) = value for f(5 9(5)- A. 5 an C—5 mt PM? #62135?) D' 1 W5 {um 2&7: :: Si" 2:77;} ,3531363E. can not be determined from the above information only £0!) —g(><} : comt ow Ml?) {Mu—$0) : Fall 2011 2 {was} I 2 (8 pts) 6. Compute the following limit Name: _ 62“ — 1 —— cc hm ———~“ ilk—+0 :62 Warning: In the numerator, the power of e is 233 and not a3. W A. DNE, {fl/n ‘5 “1 ’X it” ‘ 282:0. % 1 :1 m M __ XHD X2 Xao 2X 13' 2 “g 1 o. 1 62"! L’H s2 / D 2 im ' X : m j; E x40r >< xvm 1x 00 O Jxm-Y - 1L 0 2 ix x {1+ ’Zegxm‘fl i771 6 a : m mmWw-aw— ; r O7 X—a 0" >1 XMQ" (2’3) .9, ‘0‘ Page 4/ 7 g’(m) for all a: on the interval (0, 8) and f(1) — 9(1) 2 2, then determine the (8 pts) (8 pts) MA 165 Exam 3 01 Fall 2011 7. Compute the following limit Name: lim (1 + a: (IF->00 (1 t 33$ : €£m(’*§>y L. LY) l“ 2 167” (I if?) 62 m X f i i" y) 3 m WWM=W X #03 X j X ""W “3!; can it“ I ~14, LIH . __g ' \\ :3“ "am Mr -—~ 2 £11,?» ’9” ":2 “)2 gar-v00 _. if; wa (4.“; . 8. Compute the following limit 1- “3 1 i chml x — 1 lnac le JL. - LL » . 9H1 X4 (My)-ng )(iMX—‘X'l'l A 1 ()0 — e0 X9 2 (X4? X 1 , :0. 96B — L H , o 2 : (JR/)4 VX'R:7¥€M)¢‘1 C 1 X v ~ - — ~71 (x of: +5” 3 ._ ‘ 1 - m gm y L’H Ti— D_ _ X‘Ii /_ _L + W: 3% 4 0 X X *“1 351+¢ E. 0 t7 _, 1m X m (Hg): Q m dwelt; 0.0 _£€Xgm(’%§) A. DNE ’ B. e Page 5/7 (8 pts) Fall 2011 Name: MA 165 Exam 3 01 9. Which of the following is the graph of the function fix) 2 A. $615. MA 165 Exam 3 01 Fall 2011 Name: (8 pts) 10. Find the point on the line y = 2m + 3 that is Closest to the origin. 5 v '«F‘» f‘“$’ * 2::€§§?§7 A“ (2’2) kfifiggi "M“"*“‘*‘*“"“”"’ 6 3 E? xm+4w¥1+lfl><+t7 B_ __ _ WW M V W “i‘ 5’5 ~: ’5)?sz + 9 C. (—3, —3) afifi» mwiftgzr aux+12. d” :2 5W+22Y+$ D. 6’ 3 43:76; 2 tax +1210 we xxx-3:: d‘x E 5 4 A: ;:;_Q:::}L-L:Wi ~ "g> g d'X -3 R ' $ T » q, abLmM r G ‘ _.__'E+"§:-c—— m2 yZ . 1+3-1 A={2><)?M) A:4*X\3 L A. 20 v 7’” B. 16 =9 iv 95» :2 4—«X > 8) r9[ 4,) 4( 9&0. 12 (9:.pé 4px?” 2’ D. 8 A14X-3— 4-?(1 (11¢:de E 4 Azéx omit éfiflzéxgflé~2w+é 4-)? 0w: 2 fix? 1’ «me + + + + 0 “ WWW...imwwmi {:2 cake“ mfl‘m “hazygy \mfl—X ;. I2 Page 7/8 MA 165 Exam 3 01 Fall 2011 Name: ___—.________ Page 8/8 (8 pts) 12. A cylindrical can (With both top and bottom lids) is to hold ZOOOCm3 of oil. Find the radius of the can that Will minimize the cost of the metal to manufacture the can. V Velume V3: Frail. TF‘FFLh : 2000 $6 A. “3% 7r xv AWOL A: ZWVQ’FV 2n“? 3““ 3k 10 ~33 Kl? Av. :2 W62» + Q‘fi‘fl“ B. — “my” «w ‘ ' new“ 7r '1 $000 20 1; ‘4’???“ ~—~--——» C — A 4 v 3 {77? M30 0 11“ 1ng Sid; W: lace? m W, {0 7T “it” '77 E 3 $9 71' if}, M c =4 fjj «r— dfik m A? flat m M ...
View Full Document

This document was uploaded on 01/19/2012.

Page1 / 8

Sol-165E3-F2011 - MA 165 Exam 3 01 Fall 2011 NAME...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online