ma161-practice-final

# ma161-practice-final - MA 16100 FINAL EXAM PRACTICE...

This preview shows pages 1–2. Sign up to view the full content.

MA 16100 FINAL EXAM PRACTICE PROBLEMS 1. lim x 1 x 2 - 1 x 2 - x =A . - 1B . 0C . 1D . 2E .D o e s n o t e x i s t 2. If y =( x 2 +1)tan x ,then dy dx . 2 x tan x +( x 2 +1)sec 2 x B. 2 x sec 2 x C. 2 x tan x x 2 x D. 2 x tan x +2 x sec 2 x E. 2 x tan x 3. If h ( x )= ± x 2 + a, for x< - 1 x 3 - 8f o r x ≥- 1 determine all values of a so that h is continuous for all values of x . A. a = - . a = - 8C . a = - 9D . a = - 10 E. There are no values of a . 4. Evaluate lim x 0 + x cos( 1 x ). (Hint: - 1 cos( 1 x ) 1 for all x 6 =0 .) A .0 B .1 C . - . π 2 E. Does not exist 5. If f ( x 1 x +3 , then lim x 1 f ( x ) - f (1) x - 1 . 1 4 B. 1 16 C. - 1 16 D. - 1 4 E. Does not exist 6. The equation x 3 - x - 5 = 0 has one root for x between - 2 and 2. The root is in the interval: A. ( - 2 , - 1) B. ( - 1 , 0) C. (0 , 1) D. (1 , 2) E. ( - 1 , 1) 7. If f ( x 1 - x 1+ x f 0 (1) = A. - . - 1 2 C. 0 D. 1 2 E. 1 8. If y =ln(1 - x 2 )+sin 2 x dy dx . 1 1 - x 2 +cos 2 x B. 1 1 - x 2 +2sin x cos x C. 1 1 - x 2 x D. - 2 x 1 - x 2 2 x E. - 2 x 1 - x 2 x cos x 9. Find f 00 ( x )i f f ( x 1 - x 1+ x A. 4 (1+ x ) 3 B. - 4 (1+ x ) 3 C. - 4 x (1+ x ) 3 + 2 (1+ x ) 2 D. 2(1+ x ) 2 - 2 x (1+ x ) (1+ x ) 4 E. - 1 10. Assume that y is deﬁned implicitly as a diﬀerentiable function of x by the equation xy 2 - x 2 + y +5=0. Find dy dx at ( - 2 , 1). A. 9 B. - 5 3 C. 1 D. 2 E.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 01/19/2012.

### Page1 / 2

ma161-practice-final - MA 16100 FINAL EXAM PRACTICE...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online