Formula+for+number+of+pairwise+comparisons

# Formula+for+number+of+pairwise+comparisons - Math 103...

This preview shows pages 1–2. Sign up to view the full content.

Math 103, Section 11, January 25, 2010 The sum of consecutive integers formula is 1+2+3+4+5+…+L=L*(L+1) 2 where L is the last integer to be added. In an election with N candidates, we substitute L=N-1 in the sum formula above. This gives the formula for pairwise comparisons for N candidates: 1+2+3+. ..+ N - 1 = (N-1)(N ) pairwise comparisons. 2 Examples. 1.In an election with 54 candidates,  a. How many pairwise comparisons are there?  Answer:  1431 pairwise comparisons Solution: N=54.       L=N-1=53, Use the formula: 1+2+3+. ..+ N - 1 = (N-1)(N) 2 Then 1+2+3+…+53=(53*54)/2=1431 pairwise comparisons b. If one of the candidates is a Condorcet candidate, how many points does this  candidate receive?  Answer is 53 points. The Condorcet candidate wins each head-to-head. That is, the Condorcet  candidate is preferred over each of the other 53 candidates in a head-to-head  comparison.  2.How many matches are played in a round robin tournament with 12 teams?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

Formula+for+number+of+pairwise+comparisons - Math 103...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online