Practice_problems_January_18

Practice_problems_January_18 -...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 103, Section 11   Practice problems with solutions     1. Consider the following preference schedule: Number of  voters 8 19 2 15 27 1 st  choice A D D B C 2 nd  choice B A B D A 3 rd  choice D B A A D 4 th  choice C C C C B a. How many people voted in this election? b. Is there a majority winner?  Explain. b. Which candidate wins using the plurality method? Why? c. Which candidate wins using the Borda count method?   d. Is there a Condorcet candidate?  Explain. e. Does this election, under the plurality method, violate the Condorcet criterion?  Explain. f. With 4 candidates, how many different preference ballots are there? g. With 5 candidates, how many Borda points are given out by 1 ballot? You don’t need to list them. Just give a number as your answer. 2.True or false. Write True or False in each front of each part. ______a. A majority candidate is a plurality candidate.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/20/2012 for the course MATH 103 taught by Professor Berkowitz during the Spring '07 term at Rutgers.

Page1 / 3

Practice_problems_January_18 -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online