{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Exam2Key (4) - amount in moles ampere atmosphere atomic...

This preview shows pages 1–5. Sign up to view the full content.

ABBREVIATIONS AND SYMBOLS CONSTANTS amount in moles n ampere A atmosphere atm atomic mass unit u Avogadro constant N A Celsius temperature °C coulomb C electromotive force E energy of activation E a enthalpy H entropy S equilibrium constant K Faraday constant F free energy G frequency ν gas constant R gram g hour h joule J kelvin K kilopascal kPa liter L measure of pressuremmHg minute min molal m molar M molar mass M mole mol mole fraction χ Planck’s constant h pressure P rate constant k reaction quotient Q second s speed of light c temperature, K T time t volt V volume V R = 8.314 J·mol –1 ·K –1 R = 0.0821 L·atm·mol –1 ·K –1 1 F = 96,500 C 1 F = 96,500 J·V –1 N A = 6.022 × 10 23 mol –1 h = 6.626 × 10 –34 J·s c = 2.998 × 10 8 m·s –1 1 atm = 760 mmHg = 101.3 kPa V (ideal gas) at STP = 22.4 L·mol –1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Equations and Constants  N A = 6.022 x 10 23 R = 8.314 J/mol K = 0.08206 L atm/mol K Boltzmann Constant k B = R/N A m e = 9.10939 x 10 -31 kg c = 2.998 x 10 8 m/sec h = 6.626 x 10 -34 J s R Rydberg = 1.096776 x 10 7 m -1 1 atm = 760 mmHg = 760 torr = 1.01325 bar = 1.01325 x 10 5 Pa PV = nRT P A = χ A P Total u rms = [3RT/MM] 1/2 u rms = root mean square velocity MM = molecular or atomic mass q = CΔT C = heat capacity = m (specific heat) ΔE = q + w dw = -pdV ΔH = ΔE + PΔV C = heat capacity = m (specific heat) = n C m m = sample mass n = moles of sample Cm = molar heat capacity ΔH o rxn = ΣmΔH o f (products) – ΣnΔH o f (reactants) E = h           ν c = νλ E n = -(2.18 x 10 -18 J) 1/n 2 (Hydrogen Atom) Momentum p = mu KE = ½ mu 2 = p 2 /2m (note u = velocity, ν = frequency) λ = h/p = h/mu KE(electron) = hν – Ф or if atom or molecule KE(electron) = - IE (Ionization Energy) pH = -log[H + ] pOH = -log[OH - ] pH + pOH = 14.00 K a ·K b = K w K w = 1.0 x 10 -14 (at 25 o C) Quadratic equation ax 2 + bx + c = 0 x = [ - b ± (b 2 – 4ac) 1/2 ] / 2a Diatomic Molecular Orbital Energy Level Diagrams

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
For Li through N ____ σ 2p * ____ ____ π 2p * ___ ___ ___ 2p’s ___ ___ ___ 2p’s ____ σ 2p ____ ____ π
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 12

Exam2Key (4) - amount in moles ampere atmosphere atomic...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online