Pre-Calc Exam Notes 140

# Pre-Calc Exam Notes 140 - 140 Chapter 6 • Additional...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 140 Chapter 6 • Additional Topics §6.3 The ﬁfth item is a special case of the multiplication formula: (a + bi ) (a − bi ) = ((a)(a) − ( b)(− b)) + ((a)(− b) + ( b)(a)) i = (a2 + b2 ) + (−ab + ba) i = (a2 + b2 ) + 0 i = a2 + b 2 The sixth item comes from using the previous items: a + bi c − di a + bi = · c + di c + di c − di (ac − b(− d )) + (a(− d ) + bc) i = c2 + d 2 (ac + bd ) + ( bc − ad ) i = c2 + d 2 The conjugate a + bi of a complex number a + bi is deﬁned as a + bi = a − bi . Notice that (a + bi ) + (a + bi ) = 2a is a real number, (a + bi ) − (a + bi ) = 2 bi is an imaginary number if b = 0, and (a + bi )(a + bi ) = a2 + b2 is a real number. So for a complex number z = a + bi , z z = a2 + b2 and thus we can deﬁne the modulus of z to be z z = a2 + b2 , which we denote by | z |. Example 6.9 Let z1 = −2 + 3 i and z2 = 3 + 4 i . Find z1 + z2 , z1 − z2 , z1 z2 , z1 / z2 , | z1 |, and | z2 |. Solution: Using our rules and deﬁnitions, we have: z1 + z2 = (−2 + 3 i ) + (3 + 4 i ) = 1 + 7i z1 − z2 = (−2 + 3 i ) − (3 + 4 i ) = −5 − i z1 z2 = (−2 + 3 i ) (3 + 4 i ) = ((−2)(3) − (3)(4)) + ((−2)(4) + (3)(3)) i = −18 + i −2 + 3 i z1 = z2 3 + 4i (−2)(3) + (3)(4) + ((3)(3) − (−2)(4)) i = 32 + 42 17 6 + i = 25 25 | z1 | = = | z2 | = =5 (−2)2 + 32 13 32 + 42 ...
View Full Document

## This note was uploaded on 01/21/2012 for the course MAC 1130 taught by Professor Dr.cheun during the Fall '11 term at FSU.

Ask a homework question - tutors are online