{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Pre-Calc Exam Notes 149

# Pre-Calc Exam Notes 149 - Polar Coordinates • Section 6.4...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Polar Coordinates • Section 6.4 149 x y O θ y x r ( r , θ ) ( x , y ) Figure 6.4.6 Figure 6.4.6 shows how to convert between polar coordinates and Cartesian coordinates. For a point with polar coordinates ( r , θ ) and Cartesian coordinates ( x , y ): Polar to Cartesian: x = r cos θ y = r sin θ (6.9) Cartesian to Polar: r = ± radicalBig x 2 + y 2 tan θ = y x if x negationslash= (6.10) Note that in formula (6.10), if x = 0 then θ = π /2 or θ = 3 π /2. Also, if x negationslash= 0 and y negationslash= 0 then the two possible solutions for θ in the equation tan θ = y x are in opposite quadrants (for ≤ θ < 2 π ). If the angle θ is in the same quadrant as the point ( x , y ), then r = radicalbig x 2 + y 2 (i.e. r is positive); otherwise r =− radicalbig x 2 + y 2 (i.e. r is negative). Example 6.15 Convert the following points from polar coordinates to Cartesian coordinates: (a) (2,30 ◦ ); (b) (3,3 π /4); (c) ( − 1,5 π /3) Solution: (a) Using formula (6.9) with r = 2 and...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online