{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Thermodynamics HW Solutions 452

Thermodynamics HW Solutions 452 - Chapter 5 Numerical...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 5 Numerical Methods in Heat Conduction 5-57 "!PROBLEM 5-57" "GIVEN" k=1.4 "[W/m-C]" A_flow=0.20*0.40 "[m^2]" t=0.10 "[m]" T_i=280 "[C], parameter to ve varied" h_i=75 "[W/m^2-C]" T_o=15 "[C]" h_o=18 "[W/m^2-C]" epsilon=0.9 "parameter to ve varied" T_sky=250 "[K]" DELTAx=0.10 "[m]" DELTAy=0.10 "[m]" d=1 "[m], unit depth is considered" sigma=5.67E-8 "[W/m^2-K^4], Stefan-Boltzmann constant" "ANALYSIS" "(b)" l=DELTAx "We consider only one-fourth of the geometry whose nodal network consists of 10 nodes. Using the finite difference method, 10 equations for 10 unknown temperatures are determined to be" h_o*l/2*(T_o-T_1)+k*l/2*(T_2-T_1)/l+k*l/2*(T_5-T_1)/l+epsilon*sigma*l/2*(T_sky^4- (T_1+273)^4)=0 "Node 1" h_o*l*(T_o-T_2)+k*l/2*(T_1-T_2)/l+k*l/2*(T_3-T_2)/l+k*l*(T_6-T_2)/l+epsilon*sigma*l*(T_sky^4- (T_2+273)^4)=0 "Node 2" h_o*l*(T_o-T_3)+k*l/2*(T_2-T_3)/l+k*l/2*(T_4-T_3)/l+k*l*(T_7-T_3)/l+epsilon*sigma*l*(T_sky^4- (T_3+273)^4)=0 "Node 3" h_o*l*(T_o-T_4)+k*l/2*(T_3-T_4)/l+k*l/2*(T_8-T_4)/l+epsilon*sigma*l*(T_sky^4-(T_4+273)^4)=0...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online