262FE-F2002

262FE-F2002 - NAME 1 2 MA 262 Fall 2002 FINAL EXAM...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: NAME 1 2 MA 262 Fall 2002 FINAL EXAM INSTRUCTIONS INSTRUCTOR . You must use a #2 pencil on the mark—sense sheet (answer sheet). . On the mark—sense sheet, fill in the instructor’s name and the course number. . Fill in your name and student identification number and blacken in the appropriate spaces. . Mark in the section number, the division and section number of your class. For ex- ample, for division 02, section 03, fill in 0203 and blacken the corresponding circles, including the circles for the zeros. (If you do not know your division and section number ask your instructor.) . Sign the mark~sense sheet. There are 25 questions, each worth 8 points. Blacken in your choice of the correct an— swer in the spaces provided for questions 1725. Do all your work on the question sheets. Turn in both the mark~sense sheets and the question sheets when _ygu are finished. . No partial credit will be given, but if you show your work on the question sheets it may be considered if your grade is on the borderline. . NO CALCULATORS, BOOKS OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. NAME 3(33 +1)2 3/ 1. If y’ : ,y(—1): 2, then y(0) : 2. If my' — 3y 2 $3 and y(1) : 1 then y(e) : macaw? EDQW? NAME 3. The general solution of | | dsc 312 — 51:2 is A. y§—$2y~$3:c B. y—+x2y+$3:c C. 2my+y2+3x2 :c D. log(;1:2 + y?) = c E. none of the above 4. The population of a certain city is increasing at a rate inversely proportional to the population. At t : 0 the population is 1000 and at t 2 1 it is 2000. The population as a function of t is p(t) = A. 1000x/3t + 1 1000 ‘/1—§:t (3. 1000(1—Ft) 1000 l—it E. 1000(1—+t2) B. D. NAME 5. A rocket traveling straight up has velocity 110 when it is at a distance of 212 from the surface of the earth where R is the radius of the earth. The engines are shut off and the only force on the rocket is due to the gravitational attraction of the earth. The velocity v of the rocket when it is a distance a: from the surface of the earth satisfies a differential equation where g is a constant. For what values of 110 will the velocity be positive for all 2:? A. 120 > «291% B. 110 > VgR /2R C. ’Uo> 9? (R D. ’U0> 1,3— R E. ’U0> 93— 6. Initially a IOU—gallon tank is half full of pure water. A salt solution containing 0.2 lb. of salt per gallon runs into the tank at a rate of 3 gallons per minute. The well mixed solutions runs out of the tank at a rate of 2 gallons per minute. Let 17(t) be the amount of salt in the tank at time t. Then $(t) satisfies the differential equation A :‘fzo‘4_503:t B 3%:0'6_502it C %:0'6+502:t d 2 D'd—f: ~50L E 2—:20'4_502:t NAME 3 4 7 7_IfA: 2 6 1 ,thendet(—2A): 3 14 —1 A. 60 B. —60 C. —240 D. 240 E. 30 8. If A and B are 3 x 3 matrices such that det A .2 3, detB : ~4, then det(~2A_lB) 32 h 3 32 3 C. 96 8 D. __ 3 A. B. E.§ 3 NAME 813 6—2: 9. If A : [at “2644, then det(A_1): l A. —§€t 1 B. ~§€Wt C. —3et D. 3e‘ E. —3e“‘ 10. Determine all values of k so that the system 1171 + $3 I 0 11:1 +2172 +kLL'3 =0 k$1+ [$132 + 61133 =k+4 has infinitely many solutions. A. k 75 —4 B. k7é3andk5£~4 c. k23andk2—4 D. k=3 E. k:—4 NAME 11. Which of the following sets is a subspace of the given vector space? A. V = 03(R), S : {ym — (ac2 ~1)y”+ 3x(y’ — 2) — y = 0} B. V : COOK), S : {ylll _ ($2 _1)y// +3xy/ _ y : 0} C. V2R3.S:{(m,y,z)ER3:3x—y:z+1} a b D. V=M2X2(R), S: {A2 [C d EM2X2(1R):a+d= 1} E. V = Ola—1,11), S = {f <—: v, f’(—1) = 21m) — 1} 12. Consider the system Ax=b given by then xT : [$1, 5102, 2:3] is NAME 13. The vectors (1, 2, 1), (3, 4, 5), and (2, —2, k) are linearly dependent if k equals A. 4 B. 8 C. —5 D. —1 E. 0 14. Let 1 —1 2 A : [—3 3 —6]’ and let T : R3 —> R2 be a linear transformation given by T(:r) : Am. Then Ker(T) and Rng(T) are A. Ker(T) : span{(0, 0, 1), (1, 0, —2)}, Rng(T) : span{(0, 0, —1), (1, 2, 3)} B. Ker(T) : span{(1, 1, 0), (—2, 0, —1)}, Rng(T) =span{(0, —3), (1, 2)} C. Ker(T) = span{(1, 1, 0), (—2,0,1)}, Rng(T) :span{(1, ~3)} D. Ker(T) : span{(1,0), (0, —1)}, Rng(T) =span{(1, 1,0), (2,0, 2)} E. Ker(T) 2 span{(0, —3,0), (—2,0, 0)}, Rng(T) :span{(0,0)} NAME 15. A basis for the kernel of the linear transformation T : 02(R) ——) C(R) given by T(y) : y" + 43/ + 8y is A. {6%, teZ‘} B. {6"2t cost, 6—2‘sint} C. {8—4t cos 2t, 6““ sin 2t} D. {ta—4‘ cos t, e—4tsint} E. {ti—2‘ cos 2t, 6‘” sin 2t} 16. The general solution of y” + ay’ + by = 0 is y : Clem + 62622. To find a particular solution by the method of undetermined coefficients of the equation y”+ay'+by:ez+e3$+1, one should try a solution of the form 616$ + 6263“ + C3 0111263” + 0263” + 03 clrcex + 0263:” + 03$ 611,123: + C263m $.50??? C182 + 0263“: + 0331: + C4$2 NAME 17. A trial solution to use for finding a particular solution of the differential equation (D2 —1)(D2 — 4D + 3):; : cosx — area“ is: A. C1 cosa: + Cg sinar + 0316269” + 04x36” B. (3'1 cos :c + Cg sinx + 03:36” + C4$2€$ C. 0115 cos a: + Czar sins: + C3$€z + 04.73%” + 05x36; D. 01 cos a: + 02 sin a: + 032:6z + C463z E. 01 cos a: + 02 sin :1: + C'3em + C4956” + 05113261; 18. If y : ulyl + uzyz, where yl : 8t and 3/2 = t, is a particular solution of the equation I/ t l y +my’—~1Tty:2(1—t)e_t, 0<t<1, then by applying the method of variation of parameters one finds that U2 : A. —Ze_t B. 264 C. e‘t 1 D. §€_t E. te—t 10 NAME 19. One solution of the differential equation is yl 2 :17. Another solution is of the form yz : m: where 1} satisfies the differential equation A. v" + :w' z 0 $21)” + 2131/ = 0 . 11:21)" + (:1: +1)U' = 0 . 1:21)” + (2x + 1)v' : O .mcow (2:1: +1)v” + $21), = 0 20. Let y(x) be the solution to the initial value problem 34” * 311’ + 2y = 43:, 31(0) = 4, y'(0) = 3- What is y(1)? 11 NAME . . . . d2 d . 21. The oscillation of a spring—mass system [S determined by i + 3—3:- + 2:1: 2 0, w1th dt2 dt d initial conditions 33(0) 2 1 and : ~3. Then a. sketch of the motion x(t) is A. 9( B. ’X C. ,x D. 9‘ 12 NAME 22. It is observed that an eigenvalue of the matrix ~1 0 O 2 1 4 O —1 —3 is /\ = —1. Let m_1 denote the multiplicity of this eigenvalue, and d_1 denote the dimension of the eigenspace corresponding to this eigenvalue, then which one of the following is true? 0 2 k 23. Determine all values of k so that the matrix 0 2 k is defective. 0 2 k A. k = O B. k : 2 C. k 2 —2 D. no k E. all k’s 13 is 14 _e—2t e4t 0 0 8—2: ecu e—Zt _e4t 0 0 6—21: e4t “6—2t 64¢ 0 0 6—2t 64¢ _e—2t e4: 0 O e—Zt e4: NAME _ —2t 0 25. Ifa fundamental matrix for x’ : Ax is X(t) : [ e_2t 2t J , then the general solution 6 e . . 0 . t0 the system of differential equations x’ = Ax + [ J [S A. [Le-23‘ :il{[:;l+[£l} 3- [Le—23‘ Gama—{:1} 0- [:3 ef’quzfll‘il} D. [:35 eithflle‘il} E- hi?" ail {liil — [Jill 15 ...
View Full Document

This document was uploaded on 01/21/2012.

Page1 / 15

262FE-F2002 - NAME 1 2 MA 262 Fall 2002 FINAL EXAM...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online