220E2-S2011

220E2-S2011 - MA 22000 Exam 2 Form A Spring 2011 1 2(m +11)...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 22000 Exam 2 Form A Spring 2011 1 2(m +11) ~ 3(3: +11)2 — (2m — 3952) ' h A. —2:L‘—3h+2 B. ~—2x~3h—2 C. —3h+2 D. ~6$-3h+2 E. ~650—l—3h—l—2 2. A salesperson for Acme Piano Company is reimbursed $120 per day for meals plus $0.42 per mile driven. Write a linear equation giving the daily cost 0, in dollars, in terms of 3:, the number of miles driven. A. C(93) = 0.42m + 120 C(m) = 0.4251: — 120 = 120% — 0.42 C(rc) = —120:13 — 0.42 C(95) = —120m + 0.42 scrum MA 22000 Exam 2 Form A Spring 2011 3:52 — 10x—8 3' $133; 49:2 —15x—4 : 0 I‘1 31: Eli H ._. A. B. C. D. E. This limit does not exist. 4. Find and simplify g(f(a:)) if f(a:) = 2m + 3 and g(x) : 3:52 — 1. 12202 + 36$ + 26 6:32 —- 18m + 16 6m2 + 1850 + 12 8:32 —— 18:10 + 22 121‘2 + 36$ + 24 WUQW? MA 22000 Exam 2 Form A 5. Find the derivative of the function f = 4a;(rc3 — at the point (2, 56). A. 388 128 276 512 96 spam 6. Find the derivative of the function = 5:02 -I- 12f/T— 5; A 10:73 $373~:—§ B 10m—$—:/§ g C 1050 Egg—1% D 1030—;373—135 E 10:1; Ely—Z— Spring 2011 MA 22000 Exam 2 Form A $2+4 3332—1. 8. Find 1/ if y 2 —26m A. I: —— y (3332 — 1)2 22m B. I: ———— y (33:2 — 1)2 C , M 12$3 + 229: ' y " (3:172 —1)2 ~21: D. '2 —————— y (31:2 — 1)2 261: E. I: _—— y (39:2 — 1)2 Spring 2011 MA 22000 9. Find the derivatiVe of the function 9 “95):?” 18 —36m (m2 — 4>3 9 A. B. C. 361‘ (m2 ~ 4>3 —18 ($2 - 4)3 D. E. 413(132 — 4) _4)2 Exam 2 Form A 10. Find an equation of the line tangent to the graph of f at the point (1, g) if 1 = —— 2 f“) m 3m4+ A.y:1—33:c—%l B.y=l§3€c——§ C.y=13m~—33—1 D.y211§m+% E.y=%:c+% Spring 2011 MA 22000 Exam 2 Form A Spring 2011 11. Below is the derivative of a function f. Find the values of :1: Where the tangent to the graph of f is horizontal. 6m2—21m~12 / _ $2_4 A. 1-~1,3:=~%,a:=1, $24 B. $=—1, i=1 1 _ 0.113 —§,’U—4 D. $——%, $25 E. mz—g, 73:5 12. The percent P of defective parts produced by a company 75 days after it starts operation is modeled by I _t+200 E P“) ‘ 5(t + 3) Find the rate of change of P when t = 1. Give your answer correct to two decimal places. A. —5.81 B. ~3.62 C. —4.92 D. ~2.46 E. ~1.75 MA 22000 13. The demand function for a product is p = fl profit for a: z 4. A. P159530 2.4 1.4 3.4 5.4 4.4 Exam 2 Form A Spring 2011 1_0 and the cost function is C' = 0.1w—l—100. Find the marginal 14. The height 5 in feet at time t in seconds of an object dropped from the top of a building is s = —16t2 +32. What is the average velocity over the interval [0, 2]? A. B. C D. E ~16 -32 ...
View Full Document

Page1 / 7

220E2-S2011 - MA 22000 Exam 2 Form A Spring 2011 1 2(m +11)...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online