{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# bl -...

This preview shows pages 1–2. Sign up to view the full content.

function [x,delta,delstar,theta,cf,xtran,xsep,Lambda]=bl(x,U,dUdx,Re) % laminar and turbulent boundary calculation % John Sullivan % 10/1/94 % Ref. Houghton and Carpenter , Schlichting % x - distance along the upper or lower surface of the % airfoil starting from the stagnation point % Normalized to a chord of 1.0 % % U - surface velocity on the airfoil % normalized to a free stream velocity of 1.0 % % dUdx - derivative of the velocity along the surface % % Re - Reference Reynolds number based on chord and free stream velocity % n=length(x); m=n-1; xsep=x(n); % intialize separation and transition at trailing edge xtran=x(n); x % intial values at stagnation point Lambda(1)=7.052 ; % for stagnation point flow Z=0; I0=1/63*(37/5-Lambda(1)/15-Lambda(1).^2/144); I1=3/10-Lambda(1)/120; F1=I0-2*Lambda(1)/63.*(1/15+Lambda(1)/72); F2=4+Lambda(1)/3-2*Lambda(1).*(I1+2*I0); rhs=F2/F1+Lambda(1); delta(1)=sqrt(Lambda(1)/(dUdx(1)*Re)); delstar(1)=I1*delta(1); theta(1)=I0*delta(1); cf(1)=0; % for i=2:n

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

bl -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online