{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# hw7 - CAAM 336 DIFFERENTIAL EQUATIONS Problem Set 7 Posted...

This preview shows page 1. Sign up to view the full content.

CAAM 336 · DIFFERENTIAL EQUATIONS Problem Set 7 Posted Wednesday 6 October 2010. Due Wednesday 13 October 2010, 5pm. General advice: You may compute any integrals you encounter using symbolic mathematics tools such as WolframAlpha, Mathematica, or the Symbolic Math Toolbox in MATLAB. This problem set counts for 50 points, i.e., half the value of the earlier problem sets. The late policy will function as usual on this problem set. 1. [50 points] Use the finite element method to solve the differential equation - ( u 0 ( x ) κ ( x )) 0 = 2 x, 0 < x < 1 for κ ( x ) = 1 + x 2 , subject to homogeneous Dirichlet boundary conditions, u (0) = u (1) = 0 , with the approximation space V N given by the piecewise linear hat functions that featured on the last problem set: For n 1, h = 1 / ( N + 1), and x k = kh for k = 0 , . . . , N + 1, we have φ k ( x ) = ( x - x k - 1 ) /h, x [ x k - 1 , x k ); ( x k +1 - x ) /h, x [ x k , x k +1 ); 0 , otherwise . (a) Write MATLAB code that constructs the stiffness matrix K for a given value of N , with κ ( x ) = 1 + x 2 . [You may edit the fem_demo1.m code from the class website. You should compute all necessary integrals (by hand or using a symbolic package) so as to obtain clean formulas that depend on
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern