This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CAAM 336 DIFFERENTIAL EQUATIONS Problem Set 8 Posted Wednesday 27 February 2008. Due Friday 7 March 2008 in class. 1. [50 points] Use the finite element method to solve the differential equation d dx parenleftBig (1 + x 2 ) du dx parenrightBig = 2 x, &lt; x &lt; 1 subject to the inhomogeneous boundary conditions u (0) = 1 u (1) = / 4 with the approximation space V N given by the piecewise linear hat functions : For N 1, h = 1 / ( N +1), and x k = kh for k = 0 ,...,N + 1, we have k ( x ) = ( x x k 1 ) /h, x [ x k 1 ,x k ); ( x k +1 x ) /h, x [ x k ,x k +1 ); , otherwise . Note that this is similar to Problem 3 of HW 7, but here we have inhomogeneous boundary conditions. You may use the solutions to HW 7 as an aid. (a) Write a MATLAB code that constructs the stiffness matrix and load vector depending on N . (You should be able to compute all necessary integrals by hand and arrive at clean formulas that depend on N or h . Symbolic integration is as inefficient as it is inelegant here.)....
View Full
Document
 Fall '09
 Tompson

Click to edit the document details