{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

361-CH2a - CHAPTER2 TimeValueofMoney Futurevalue...

Info icon This preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-2 Which would you rather have? Today     In One Year      Int. Rate $100 $100 0% $100 $1m      999,900% $100 $1,000 900% $100 $500 400% $100 $200 100% $100 $150 50% $100? $110? 10% $100? $105? 5%
Image of page 2
2-3 Time lines Show the timing of cash flows. Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the  first period (year, month, etc.) or the  beginning of the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 I%
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-4 General Assumption: Cash Flows (CFs) occur at the END of the  period, unless stated otherwise.  Payments (PMTs) occur at the END of the  period (ordinary annuity), unless stated  otherwise (annuity due). Calculator: Orange Key, BEG/END
Image of page 4
2-5 CFs can either be:  a) Lump Sum ($1000 to received in 1  year or 5 years, or $1000 invested  today), or  b) recurring CFs (non-constant CFs),  e.g. $100 in YR1, $200 in YR 2, $300 in  YR) 3) or PMTs (constant CFs, e.g.  $100 per year for 3 years).  Calculator: CF j  key vs. PMT key
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-6 Drawing time lines 100 100 100 0 1 2 3 I% 3 year $100 ordinary annuity 100 0 1 2 I% $100 lump sum due in 2 years
Image of page 6
2-7 Drawing time lines 100  50  75 0 1 2 3 I% -50 Uneven cash flow stream
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-8 What is the future value (FV) of an initial  $100 after 3 years, if I/YR = 10%? Finding the FV of a cash flow or series of cash  flows is called compounding. FV can be solved by using the step-by-step,  financial calculator, and spreadsheet methods. FV = ? 0 1 2 3 10% 100
Image of page 8
2-9 Solving for FV: The step-by-step and formula methods After 1 year: FV 1  = PV (1 + I) = $100 (1.10)       = $110.00 After 2 years: FV 2  = PV (1 + I) = $100 (1.10) 2       =$121.00 After 3 years: FV 3  = PV (1 + I) = $100 (1.10) 3       =$133.10 After N years (general case): FV N  = PV (1 + I) N
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-10 See graph on p. 31.   Note that FV grows geometrically, or  exponentially, because of the  compounding process.  Why isn’t it a  straight line?  
Image of page 10
2-11 Solving for FV: The calculator method Solves the general FV equation. Requires 4 inputs into calculator, and will  solve for the fifth. (Set to P/YR = 1 and  END mode.) INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 133.10 -100
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-12 PV = ? 100 What is the present value (PV) of $100  due in 3 years, if I/YR = 10%? Finding the PV of a cash flow or series of  cash flows is called discounting  (the reverse  of compounding). The PV shows the value of cash flows in  terms of today’s purchasing power. 0
Image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern