{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

primer-poly

# primer-poly - Quadratic extensions Case S and P are...

This preview shows pages 1–2. Sign up to view the full content.

A Primer on Polynomials : Polys Jonathan L.F. King University of Florida, Gainesville 32611-2082, USA [email protected] Webpage http://www.math.ufl.edu/ squash/ 2 February, 2010 (at 13:33 ) Preliminaries. An expression such as k N ( read as k is an element of N ” or “ k in N ) means that k is a natural number; a natnum . N = natural numbers = { 0 , 1 , 2 , . . . } . Z = integers = { . . . , - 2 , - 1 , 0 , 1 , . . . } . For the set { 1 , 2 , 3 , . . . } of positive integers, the posints , use Z + . Use Z - for the negative integers, the negints . Q = rational numbers = { p q | p Z and q Z + } . Use Q + for the positive ratnums and Q - for the negative ratnums. R = reals. The posreals R + and the negreals R - . C = complex numbers, also called the complexes . Abbrevs. Poly(s) : ‘ polynomial(s) ’. Irred : ‘ irreducible ’. Coeff : ‘ coefficient ’ and var(s) : ‘ variable(s) ’ and parm(s) : parameter(s) ’. Expr. : expression ’. Fnc : function ’ (so ratfnc : means rational function , a ratio of polynomials). Seq : ‘ sequence ’. Soln : solution ’. Prop’n : proposition ’. CEX : ‘ Counter- example ’. Eqn : ‘ equation ’. RhS: ‘ RightHand Side ’ of an eqn or inequality. LhS: ‘ lefthand side ’. Sqrt : ‘ square-root ’, e.g, “the sqrt of 16 is 4”. Cts : ‘ continuous ’ and cty : ‘ continuity ’. Ptn : ‘ partition ’, but pt : ‘ point ’, as in “a fixed-pt of a map”. Below we will view various expressions as fncs of a vari- able, x . As usual, x 0 is a another name for the constant fnc 1. § Outline Preliminaries . . . . . . . . . . . . . . . . . . . 1 Monomials . . . . . . . . . . . . . . . . . . . . 1 Polynomials . . . . . . . . . . . . . . . . . . . . 1 Degree . . . . . . . . . . . . . . . . . . . . . . . 2 Upper-bounding degree . . . . . . . . . . . . . 2 The zeros of a polynomial . . . . . . . . . . . . . . . . 2 Don’t Panic ! . . . . . . . . . . . . . . . . . . 3 Factoring . . . . . . . . . . . . . . . . . . . . . 3 Zeros/Roots of fncs . . . . . . . . . . . . . . . 3 The Quadratic Formula ( QF ) . . . . . . . . . . . . . . 3 Irreducibility and the QF . . . . . . . . . . . . 4 Fully factored form . . . . . . . . . . . . . . . . 4 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . 4 Division . . . . . . . . . . . . . . . . . . . . . . 7 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . 8 Algebraic and Transcendental numbers . . . . . . . . . . . . 8 Subfields of C . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Quadratic extensions . . . . . . . . . . . . . . . . . . . 9 Case: S and P are integers . . . . . . . . . . . 10 More general coefficients . . . . . . . . . . . . . . . . . . . . 11 A Appendices 11 Fundamental Theorem of Algebra . . . . . . . . . . . . . . . 11 Making | z | small . . . . . . . . . . . . . . . . . 12 Integrating polynomials . . . . . . . . . . . . . . . . . . . . 12 Bernstein polynomials . . . . . . . . . . . . . . 12 Integration with convolutions . . . . . . . . . . 13 Polynomials in several variables . . . . . . . . . . . . . . . . 14 Roots of the Cubic and the Quartic . . . . . . . . . . . . . 14 Sum and product . . . . . . . . . . . . . . . . . 14 Roots of the depressed cubic . . . . . . . . . . . . . . . 14 Cardano’s formula . . . . . . . . . . . . . . . . 15 General cubic . . . . . . . . . . . . . . . . . . . 15 Roots of the Quartic . . . . . . . . . . . . . . . . . . . 15 Ferrari’s formula . . . . . . . . . . . . . . . . . 16 Index for “Primer on Polynomials” 16 Monomials. Here are examples: - 6 x 2 , 7 · x 10 , π x, 3 , 0 . 1a : Here are non- examples: x , e x , ln( x ) , sin( x ) . 1b : A monomial is an expression OTForm Bx n , where n N and B is a number ( in R or C ), called the coefficient of x n . To justify the monomials of (1a), note x 5 = 1 · x 5 , 3 = 3 · x 0 and 0 = 0 · x 0 . In contrast, the expressions in (1b) don’t look like monomi- als, although it would take some wrestling to show, for example, that 3 x note === x 1 / 3 does not equal some Bx n . It is easy to show that e x is not a monomial: e x has a horizontal asymp- tote as x & , yet the only monomials with a horiz. asymptote are the constants. And e x is not constant.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}