161E1-F00

# 161E1-F00 - A. e 5 t B. 150 e 5 t C. 2 5 t D. 2 t/ 5 E. 150...

This preview shows pages 1–5. Sign up to view the full content.

EXAM 1 FALL 2000 1. Find an equation of the line through (1 , - 3) and perpendicular to the line 4 x + y +7=0. A. 4 x + y - 1=0 B. 4 x - y - 7=0 C. x +4 y +11=0 D. x - 4 y - 13 = 0 E. x - 3 y +7=0 2. Solve the inequality 2 - 3 x< 5. A. x< - 1 B. x< 1 C. x> - 1 D. x> 1 E. x> 7 3 3. Find the domain of the function f ( x )= ln( x - 1) + x x +2 . A. x> 1 B. x> 0 C. x> - 2 D. 0 <x< 1 E. all real numbers x 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
EXAM 1 FALL 2000 4. Find all numbers x such that sin x =s in π 5 and 0 x 2 π . A. π 5 only B. π 5 and 4 π 5 C. π 5 and 6 π 5 D. π 5 and 9 π 5 E. π 5 , 4 π 5 , 6 π 5 ,and 9 π 5 5. Find tan ± sin - 1 ± 3 4 ²² . A. 3 5 B. 4 5 C. 4 3 D. 3 7 E. 4 7 6. Given the following graph of two functions f and g, g ( x )= x y -2 -1 1 2 3 1 2 y = g ( x ) y = f ( x ) A. - f ( x - 2) B. 1 - f ( x - 2) C. f ( x +3) - 1 D. - f ( x +3) - 1 E. - f ( x - 3) + 1
EXAM 1 FALL 2000 7. Starting with the graph of y = e - 2 x , write the equation of the graph that results from reﬂecting about the x –axis and then about the y –axis. A. y = - e 2 x B. y = - e - 2 x C. y = e 2 x D. y = e - 2 x E. y =ln(2 x ) 8. Under ideal conditions a certain bacteria population is known to double every 5 hours. Suppose there are initially 150 bacteria. Then, after t hours the number of bacteria in the population is

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A. e 5 t B. 150 e 5 t C. 2 5 t D. 2 t/ 5 E. 150 · 2 t/ 5 9. The solution of 4 2 x-3 = 3 is x = A. ln6 2 B. log 4 3 2 C. log 3 4 2 + 3 D. 1 2 [3 + log 4 3] E. 1 2 [3 + log 3 4] 3 MA 161 & 161E EXAM 1 FALL 2000 10. lim t → √ 2-t-√ 2 t = A. 1 4 B.-1 2 √ 2 C. 1 2 D.-1 √ 2 E. 2 √ 2 11. lim x → | x | sin ± 1 x 2 ² = A. 0 B. 1 C. 2 D. ∞ E. does not exist 12. lim x → + ln x x = A.-∞ B. 0 C. 1 D. 2 E. ∞ 4 MA 161 & 161E EXAM 1 FALL 2000 13. There are two values of a such that the function f ( x ) = ± x 3 if x ≤ a x 2 if x > a is continuous at the point x = a . These values are A.-2 , 2 B. 1 , 2 C.-1 , 1 D. 0 , 1 E.-1 , 14. Suppose you drive for 60 miles at 60 miles per hour and then for 60 miles at 30 miles per hour. In miles per hour, your average velocity is A. 30 B. 40 C. 42 D. 45 E. 50 5...
View Full Document

## This document was uploaded on 01/25/2012.

### Page1 / 5

161E1-F00 - A. e 5 t B. 150 e 5 t C. 2 5 t D. 2 t/ 5 E. 150...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online