161E2-F01

161E2-F01 - MA 161& 161E EXAM 2 FALL 2001 1 Given the...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 161 & 161E EXAM 2 FALL 2001 1. Given the graph of y = f ( x ), choose which graph could represent the graph of y = f ( x ). x y y = f ( x ) x y A. x y B. x y C. x y D. x y E. 1 MA 161 & 161E EXAM 2 FALL 2001 2. At how many different values of x does the curve y = x 5 + 2 x have a tangent line parallel to the line y = x . A. 0 B. 1 C. 2 D. 3 E. 4 3. Given the table x f ( x ) f ( x ) g ( x ) g ( x ) 1-1 2-2 1 1 2 3 4 2-4-3-2-1 3 2 4 3 find d dx f ( x ) f ( x ) + g ( x ) when x = 1. A. 0 B. 1 8 C. 1 2 D. 14 16 E.- 2 2 MA 161 & 161E EXAM 2 FALL 2001 4. If f ( x ) = tan- 1 x then f (2) = A. 1 5 B. 1 3 C. 1 √ 5 D. 1 √ 3 E. f (2) does not exist. 5. If f ( x ) = π x then f ( x ) = A. π x B. π x ln x C. e x ln π D. π x ln π E. π ln x 6. If F ( x ) = g ( x 2 ) then F 00 ( x ) = A. 2 x 2 g 00 ( x )+2( g ( x )) 2 B. g 00 (2 x ) C. 2 xg 00 ( x 2 ) D. 4 xg 00 ( x ) + g ( x 2 ) E. 4 x 2 g 00 ( x 2 )+2 g ( x 2 ) 3 MA 161 & 161E EXAM 2 FALL 2001 7. If f ( x ) = e x tan x then f ( π 4 ) =...
View Full Document

{[ snackBarMessage ]}

Page1 / 6

161E2-F01 - MA 161& 161E EXAM 2 FALL 2001 1 Given the...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online