161FE-F00

161FE-F00 - MA 161161E FINAL EXAM FALL 2000 1. lim x ( x 2...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 161161E FINAL EXAM FALL 2000 1. lim x ( x 2 + 3 x- x ) = A. 0 B. 2 3 C. 3 2 D. 3 E. 2. If f ( x ) = x cos( x ), then f 00 4 = A. 1 2 B.- 4 C. 4- 2 D. 4 (1- 2) E.- 1 2 ( 4 + 2 ) 3. If f ( x ) = x sin x , then f 4 = A. 1- 2 B. 2 ( 1- 4 ) C. 2 ( 1 + 4 ) D. 2 ( 1 + 2 ) E. 1 + 4 1 MA 161161E FINAL EXAM FALL 2000 4. Let g ( x ) = f ( f ( x )) and f (1) = 2, f (2) =- 1, f (2) = 7, f (1) = 5, f (- 1) = 4, f (4) = 9, f (7) = 3. Then g (1) = A. 35 B. 63 C. 180 D. 189 E. 243 5. If f ( x ) = p x + x , then f (1) = A. 1 2 2 B. 1 2 C. 2 D. 2 2 E. 3 4 2 6. If x 2- xy + y 3 = 14 then dy dx = A.- 2 xy x + 3 y 2 B.- 3 x 2 + y 2 x- y C. y- 2 x 3 y 2- x D. x + y x 2 + 2 y E. xy x 2- y 2 2 MA 161161E FINAL EXAM FALL 2000 7. The function f ( x ) has derivative f ( x ) = x ( x + 1) 3 ( x- 1) 2 . Consider the following statements I. f has a local maximum at x =- 1 II. f has a local minimum at x =- 1...
View Full Document

Page1 / 8

161FE-F00 - MA 161161E FINAL EXAM FALL 2000 1. lim x ( x 2...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online