Unformatted text preview: Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139 16.01/16.02 Unified Engineering I, II
Fall 2003 Problem Set 12 Time Spent
(min)
F12
F13 Name: F14
M13
Due Date: 11/25/03 M14
M15
M16
Study
Time Announcements: Fall 2003 Uniﬁed Engineering
Fluids Problems F12–F14
F12. For the two ﬂows given by . . .
� (x, y ) = arctan (y/x) �(x, y ) = x2 + y 2 a) Determine the velocity ﬁelds, and sketch the streamlines.
b) Determine the volume ﬂow rate through a circle of radius r .
c) Which of these ﬂows is not feasible to set up in a lab? Explain. F13. A venturi has a minimum throat area of 0.7 times the inlet/outlet areas. The water
tank is open to ambient atmospheric pressure. Determine the sealevel wind speed V which
is needed at the inlet to raise the water column 10 cm. V 10 cm F14. �1 (x, y ) and �2 (x, y ) are known to be physicallypossible ﬂows (i.e. satisfy mass con
servation), and their corresponding pressure ﬁelds p1 (x, y ) and p2 (x, y ) are known via the
Bernoulli equation.
a) A third ﬂow is now deﬁned by �3 (x, y ) = �1 + �2 . Explain how you would obtain its
corresponding pressure ﬁeld p3 .
b) Yet another ﬂow �4 = � �1 /�x is deﬁned. Is this a physicallypossible ﬂow? Unified Engineering Fall 2003 Problem M13 (Materials and Structures)
a) The state of axial stress through the thickness of a beam in pure bending (i.e. loaded
only by a moment) is given by: ÊM ˆ
s 11 = Á ˜ x 3
ËI¯ for –h < x3 < +h M is the bending moment (which is constant in x1 ), and I is the second moment of area of the
crosssection of the beam (which is also constant). If s 12 = s 32 = s 22 = s 33 = 0 what can † you say about the variation of the shear stress s 13 with x 1 , x2 and x 3 ?
b) The bending moment M now varies as a function of x1 according to M = cx1 The axial
† ÊM ˆ †
˜ x . Again, s 12 = s 32 = s 22 = s 33 = 0 . How does s 13
ËI¯ 3
vary with x1 , x2 and x 3 ? Note s 13 = 0 for –h = x3 and x 3 = +h † top and bottom surfaces of
(the
stress is still give by s 11 = Á the bean are free surfaces and do not have any stress acting on them). † †
† † Unified Engineering Fall 2003 Problem M14
For each of the states of plane stress shown acting on the differential elements drawn below do the following: 1) Draw a Mohr's circle describing the stress state. 2) Determine the principal stresses and the maximum shear stress 3) Calculate the angle from the x1 direction as shown to the more tensile principal stress direction. Note whether the angle is clockwise or counterclockwise. 2 Problem M15 (Materials and Structures)
i) By considering the change in volume of an infinitessimal element undergoing small
Ê D Vˆ
elongational strains show that the volumetric strain Ë
= e1 + e 2 + e 3
V¯
ii) A continuous body experiences a displacement field, un that is described by: [( ) u1 = 0.5 x12  x 2 2 + 0.5x1 x 2 10 3 mm [( ) u1 = 0.25 x12  x 2 2  x1 x 2 10 3 mm
† u 3 = 0.
† Determine:
a) The 6 components of the strain tensor as a function of position (i.e. in terms of x1 , x2 , x3) † b) The rigid body rotation about x 3 as a function of position (i.e. in terms of x1 , x2 , x3).
c) The principal strains and the principal strain directions at x1 = 5mm and x2 =7 mm.
d) The volumetric strain at x1 = 5mm and x2 =7 mm. 3 Unified Engineering I Fall 2003
Problem M16
The purpose of this question is to demonstrate the equivalence of the two methods at
our disposal for transforming strain (and stress) and for calculating the
principal values and directions.
Given a state of plane strain: e11 = 0.000200, e22 = +0.000400, e12 = 0.000200, do the
following:
a) Draw a Mohr's circle for the strain state. Note you may find it convenient to
work in terms of "microstrain" (strain/106) b) From the Mohr's circle determine the principal strains eI and eII and principal
˜
˜
directions, x1 and x 2 . You should specify the directions as counterclockwise
angles with respect to the original x1 and x 2 coordinate system. c) ˜˜
Determine the direction cosines for the transformation between x1 ,x2 and x1 , x 2 d) Using the appropriate tensor operation show that the original strain tensor ( e nm )
˜
transforms to the principal strain tensor ( e p q). 4 ...
View
Full
Document
This note was uploaded on 01/28/2012 for the course AERO 16.01 taught by Professor Markdrela during the Fall '05 term at MIT.
 Fall '05
 MarkDrela
 Aeronautics, Astronautics

Click to edit the document details