m10_ps04_spring04

m10_ps04_spring04 - Unified Engineering Str-Mat / Fluids...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Unified Engineering Str-Mat / Fluids Problem M10/Fxx Spring 2004 Consider two wings with the same span b = 2 m , and average chord cavg = 0.25 m, but different taper ratios: Constant chord (cr = 0.250 m, ct = 0.250 m, r = 1.0) Straight taper (cr = 0.333 m, ct = 0.167 m, r = 0.5) Constant airfoil thickness/chord ratio κ = 0.08 everywhere. Assume local loading q (y ) is proportional to chord c(y ). Total load on half-wing is F = 10 N (15 oz gross weight at 5 g’s). For each wing . . . a) Determine q (y ), S (y ), M (y ) b) Assuming load is carried by top and bottom sparcaps with separation equal to local h(y ) = κ c(y ), determine sparcap load ±P (y ). c) Assuming max p ermissible sparcap stress (1 ksi = 7 MPa for balsa), calculate minimum cap area A(y ). Assuming balsa density of � = 0.125 g/cm3 , estimate sparcap mass. d) Compute b eam curvature at wing center � = M (0)/EI (0), and esimate tip deflection � = w (b/2) assuming w �� (y ) = � is constant along span. Balsa modulus: E = 200 ksi = 1.36 GPa. e) Discuss structural and aerodynamic merits of straight vs tapered wing. Plotting of the various distributions is suggested to help with interpretation. c(y) b/2 A(y) h(y) c(y) y ...
View Full Document

This note was uploaded on 01/28/2012 for the course AERO 16.01 taught by Professor Markdrela during the Fall '05 term at MIT.

Ask a homework question - tutors are online