set7-answers - “mm- 4.5 8 Water is squirted from a...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: “mm- 4.5 8 Water is squirted from a syringe with a of V == 5 m/s by pushing in the plunger with a speed of V " p 0.03 m/s as shown in Fig. P458. The surface of the deforming control volume consists of the sides and end of the cylinder and the end of the plunger. The system consists of the water in the syringe at t = 0 when the plunger is at section (1) as shown. Make a sketch to indicate the control surface and the system whent = 0.5 s. FIGURE P458 During {beef $553 'fime [fife/"Val H73 p/mqer‘ mot/es fl, = l4, (St-10.0152»; and {/16 Wafer/b/Wa/fll af 11/109 ex/f Mal/6L5 [2: 52.507. 7763 correspond/[I79 antral surfaces 4/701 sysfe/m m‘ {:0 405/ If = 0-55 show in Me 71290]? bee/ow. —- ~=——- —-—- com‘ro/ volume 42‘ #053 ~‘-.*.‘ «‘13-! if 6‘ y S fem af 1‘ = 0.5 s u \l 3" 46-51% 5.17 Water flows steadily thruugh the control volume shown in Fig. P5.17. The volumetric flowrate acmas section (3) is 2 fig/s and the mass flowrate across section (2) is 3 slugs/s. IFIGURE P517 (a) f 6‘ VI? 51/! ==~weigl1f flawrafe across area (I) Lyn}, m (/Vofe 5 ‘5‘ am < 0 since ‘7'»? <0 for Mei/917W area (1)) m B y conserv‘afion of maSsJ for arfeacly How) "a, r- ”;2. +Ih3 1: "52 + (33 Q3 = 35/1/73/3 S/VyJ/fijZ 0!" 0"), =3 6385/0951; Thus; from 137.02, [3' (M :(“32.2 H/s‘)(6.ee Slugs/s) 5‘ " ZZZ/dug ' H/s")/S 3’ :222 MA: (I) (b) I V9 V513 M = Momenfdm f/w: amss area (I) (I) L ' 0/7 (01 fi=+c:053005'+sm30f and V,‘ \{("603300? ’Jsifl30?) =‘Wl31, where 9/], 5/75, r-6-W 35% (from 5712)) Thus , V: m, v 6.33% __ ’ 6’7" (I-9*if%?)(a.mf) Hence, WWW/H Wemfi.)~h‘,/I, =-€\4M=-»'v,14 “may (I) = (6.88 %£)(8.87§)(59330?4 91130;“) .2 (52.82+ 30.51) = 8.8795 : 52.8;‘+3o.5; lb .5 “I6 (I) 5.28 Water flows through a horizontal, 180° pipe bend as is ll» lustrated in Fig. P528. The flow cross section area is constant at a value of 9000 mmz. The flow velocity everywhere in the bend is 15 m/s. The pressures at the entrance and exit of the bend are 210 and 165 kPa, respectively. Calculate the horizontal (x and y) con-1v ponents of the anchoring force needed to hold the bend in place. ’3" x Sedfanfiz. . ~ FIGURE P516 77)}: waned/5 /: uni/or 3‘0 1%: One of Exam/943 5:”. 14 flied, now- deathly cam‘m/ W/umg féaf amen)” #6 “at, 64/17/1131 fie dédb/ 66/14/66” Swill”; fl)flnd/2) d} d» [pm—h”! ,3 “58/. 746 boriynfa/ 76KB; 4619'»; a}; #16 can/emf; 0/ YA: confra/ Vd/ume 0'1 'fhg X ama’ 1y d/iecfianu are shown Apfl/l'tafion a; 7%,, X_d/}eofibh cow/00:4er all file Mica, Momem‘um azuufi‘m ( 11.5.21) lead; 76; Icy-:9— ._._‘§_ A7195M790n 0”: 7%6 y—diiéc/Ibn camyanc’u/ 6/ He flied, mamznfum qua/fan y/e/d; - 1/015”: “ “St/VIA; = lf/l’gwgfl I z 0)" R! sflA’qfwi’ 14-)+PIA; + 3/12. 75a: Kr = &fi 1-6-9 (7000 ””9(;5’i’)/5$+ ’51)] L) + (ZlofimK7Mm1) ma [/mmf S 5 ‘3”: (moms I m 5; I: )6) M1 ) + 065' km) mo MI) um (um ”’ mood, M’JKFA K) = 742g N .925 5.36 The thrust developed to propel the jet ski shown in Video V9.7 and Fig. P536 is a result of water pumped through we we— hicle and exiting as a high-speed water jet. For the conditions shown in the figure, what flowrate is needed to produce a 300- lib Must? Assume the inlet and outlet jets of water are free jets. 3.5 in. diamter outlet jet m FlGURE P536 For {he com‘r‘al vo/Ume. ,i/‘Jclfcafeol Me X“ comm/7817f of {/76 mmanfum eymh’an ju d/J = becames CS confro/ X m (V cos30°)(9(- V, m, + \/Z (on-v1 ) ,4“Z 3: fix surface where We lam/e amumed Mai 2050 0/2 #9 emf/7‘s confra/ mam/ace and final 7% ex/f/hg wafer je7‘ i: bar/zom’al. W711? n5 = NW, =€A1V2 (I) became: Rx -" V/ 60519) 4’ El/z/q, (V): V, 60:30") Also, x4, #11 V; saf/M/ ' fl“ 25M} V V2 :42 gals“); f l By combining E75. (I) and (2) :. Rx "’ PVIZA, (2.60-10330') or [6 ya 300 _ -fl = "7—- W - 22.7 V’ M (%f4‘) (2,60'50530”)] 5 7771/:J ’ g: Q 2/4 W =(Wff2)(22.7§t)sffi I 9'35 5’4) Wth xflmomen+um _—'F- r.— ‘H-‘laoms r .d——-—_..._._/ 1‘ 2-{t diameterK I —— .. @qumlran {or cm’rra! gm vow 5- km IFIGUF'IE [35.41 FY : ’01 V; Az' V2): 1: FZVZ 411- V1 C9; 30" N9.” 5’10 X‘diC+FGA mmen+um 4+ 0 5.149 A horizontal circular cross Section jet of air having a diameter of 6 in. strikes a conical deflector as shown in Fig. P5249. A horizontal anchoring force of 5 lb is required to hold tho cone in place. Estimate the nozzle flow rate in ft’ls. The magnitude of the velocity of the air remains constant. FIGURE P5.4‘7 The can/WI y’o/ume r/mwm 1h #16 Jkekh i: used. App/z'cafibn 0f 7%6 QX/d/ or X—fl’lt’écfi‘on COM/ooflenf 076 {AC //;aear momenfum aqua/72m y/B/d’r -U,f’£I,/4I + Mafia: A]: = - 51X MM *62 crmjermfi'an 0/ max: pr/hc/je/e We, can cone/adv: far I'M: I}; camp/ess’ié/e f/aw 7%at‘ og/l, :: a: [)2 = Q A/so. U1 3 1/ ms 60 ‘ and u! = V = Q 77m; A a 1 0 -VpQ + Vcoséo p42 = #5” z, gym. gleam/o or i ’ 4 ,4 Q 2 MT]; aux j 2 IO(” M: ‘04) l f(/— (4554') I Q, = "Mm—_‘T‘T——_ [(‘WZ-‘WEE (/— 60561:")(42flw u~).___/ ’5. . y 76:" f1“ f/uj if) and 5‘ Q .-.- 23.7 H3 "_ 5 —.__._.————____—_. ——-—-————.—.——__.._— 2 5.56 Water is added to the tank shown in Fig. P556 through a L "CogstEnL ‘ . vertical pipe to maintain a constant (water) level. The tank is x “ water level placed on a horizontal plane which has a frictionless surface. ’ Determine the horizontal force, F, required to hold the tank sta- Jet area tienary. Neglect all losses. 2 1250 mm2 (2).; Frictionless surface I ' I FtGURE P5.56 Afifly'mg +he x» dwcchon QDMpomtvd‘ or “the “new momenhm «(966%th +2) 'an. wnkm‘s UFHM wan'Dl volume Skd'erJ above we get-- VIQVI A'. _ VLQVLAI T'— USlhq Bernoulli's eguafion +0 descr'cbe, 'Hm 'Frlctionlcss “How Hem "HA; Loud-ml- waiver surfing lev P S'l‘deons (I) and (zl We obtain c M MM M- Vz= Palm (2) (Mal V“ = 23;,” (3) Camblnina Bows, 1,2 and? We est-1+ F : lgh'eA.~' lghzeAz OF 1‘: : '2 (9,9,1 (1m)(605 mmzlfiumwfiomt) m 0000 mm)?- (moo M 2. _ and m M ) ‘ F20 —-—__ -—. ...
View Full Document

This note was uploaded on 01/30/2012 for the course ME 3340 taught by Professor Smith during the Spring '09 term at Georgia Institute of Technology.

Page1 / 7

set7-answers - “mm- 4.5 8 Water is squirted from a...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online