{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# daf1 - 1 libxz `'ryz,zihxwqic dwihnznl `ean `'ryz ledipe...

This preview shows pages 1–2. Sign up to view the full content.

`''ryz ,zihxwqic dwihnznl `ean 1 libxz `''ryz ledipe diiyrz zqcpdl zihxwqic dwihnznl `ean - 1 sc :zepekp ze`ad zeprhdn eli` ewca .1 . { 1 } ∈ { 1 , { 1 }} .d . 1 ⊆ { 1 , { 1 }} .c . 1 ∈ { 1 , { 1 }} .b . 2 ∈ { 1 , { 2 }} .a . 1 ∈ {{ 1 }} .` . { 1 } ⊆ { 1 , { 1 }} .e :ze`ad zeprhd z` ekixtd e` egiked .2 . A \ ( B \ C ) = ( A \ B ) ( A C ) .b . A \ ( B \ C ) = ( A \ B ) \ C .a . A B = A ( A \ B ) .` . C A m` wxe m` ( A B ) C = A ( B C ) :egiked .3 :egiked . A ± B = ( A \ B ) ( B \ A ) :jk xcben B ixhniq yxtd A .4 . A ( B ± C ) = ( A B ) ± ( A C ) .a . A ± B = ( A B ) \ ( A B ) .` :ze`ad zeveawd ly dwfgd zveaw z` e`vin .5 . {{ 1 } , { 2 }} .d . {∅ , {∅}} .c . .b . {∅} .a . { 1 } .` : B -e A zeveaw izy lkl :ze`ad zeprhd z` ekixtd e` egiked .6 . P ( A B ) = P ( A ) P ( B ) .` . P ( A B ) = P ( A ) P ( B ) .a . P ( A \ B ) = P ( A ) \ P ( B ) .b :ze`ad zeifhxwd zeltknd z` eayg .7 . P ( { 1 , 2 } ) × { 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

daf1 - 1 libxz `'ryz,zihxwqic dwihnznl `ean `'ryz ledipe...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online