daf1 - 1 libxz `'ryz ,zihxwqic dwihnznl `ean `'ryz ledipe...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
`''ryz ,zihxwqic dwihnznl `ean 1 libxz `''ryz ledipe diiyrz zqcpdl zihxwqic dwihnznl `ean - 1 sc :zepekp ze`ad zeprhdn eli` ewca .1 . { 1 } ∈ { 1 , { 1 }} .d . 1 ⊆ { 1 , { 1 }} .c . 1 ∈ { 1 , { 1 }} .b . 2 ∈ { 1 , { 2 }} .a . 1 ∈ {{ 1 }} .` . { 1 } ⊆ { 1 , { 1 }} .e :ze`ad zeprhd z` ekixtd e` egiked .2 . A \ ( B \ C ) = ( A \ B ) ( A C ) .b . A \ ( B \ C ) = ( A \ B ) \ C .a . A B = A ( A \ B ) .` . C A m` wxe m` ( A B ) C = A ( B C ) :egiked .3 :egiked . A ± B = ( A \ B ) ( B \ A ) :jk xcben B ixhniq yxtd A .4 . A ( B ± C ) = ( A B ) ± ( A C ) .a . A ± B = ( A B ) \ ( A B ) .` :ze`ad zeveawd ly dwfgd zveaw z` e`vin .5 . {{ 1 } , { 2 }} .d . {∅ , {∅}} .c . .b . {∅} .a . { 1 } .` : B -e A zeveaw izy lkl :ze`ad zeprhd z` ekixtd e` egiked .6 . P ( A B ) = P ( A ) P ( B ) .` . P ( A B ) = P ( A ) P ( B ) .a . P ( A \ B ) = P ( A ) \ P ( B ) .b :ze`ad zeifhxwd zeltknd z` eayg .7 . P ( { 1 , 2 } ) × { 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/26/2012 for the course IEM 101.1911.1 taught by Professor Yuliaglushko during the Spring '11 term at Ben-Gurion University.

Page1 / 2

daf1 - 1 libxz `'ryz ,zihxwqic dwihnznl `ean `'ryz ledipe...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online