daf5 - 5 libxz `'ryz ,zihxwqic dwihnznl `ean `'ryz ledipe...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
`''ryz ,zihxwqic dwihnznl `ean 5 libxz `''ryz ledipe diiyrz zqcpdl zihxwqic dwihnznl `ean - 5 sc . N * = { 1 , 2 , 3 , . . . } , N = { 0 , 1 , 2 , 3 , . . . } :mipeniq :zeivwpet md mi`ad miqgid m`d exxa .1 . R = { ( x, y ) : x, y Z , y = x 2 + 2 } .` . R = { ( x, y ) : x, y R , y 2 = x } .a . | R | = 6 -e , | B | = 6 , | A | = 5 miiwzne B -l A -n qgi R .b :(r''gg) zikxr-cg-cg f m`de lr `id f m`d ewca .2 . f ( x ) = x - 1 | x | +2 , f : R -→ R .` . f ( m, n ) = mn + m + n , f : N × N -→ N .a . f ( n ) = { m N * : n z` wlgn m } , f : N * -→ P ( N * ) .b :xy`k ,lre r''gg f : A -→ B divwpet e`vn .3 . B = Z , A = N .` . c < d , a < b -e a, b, c, d R . [ c, d ] xebqd rhwd B -e [ a, b ] xebqd rhwd A .a . B = N , A = N × N .b :d`ad dveawk f zgz A ly dpenzd z` mixicbn , A X dveaw zz lkl .divwpet f : X -→ Y idz .4 f [ A ] = { y Y : f ( x ) = y -y jk A -a x miiw } = { f ( a ) : a A } :egiked . f [ A B ] = f [ A ] f [ B ] miiwzn X A, B lkl .` . f [ A B ] ± = f
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/26/2012 for the course IEM 101.1911.1 taught by Professor Yuliaglushko during the Spring '11 term at Ben-Gurion University.

Page1 / 2

daf5 - 5 libxz `'ryz ,zihxwqic dwihnznl `ean `'ryz ledipe...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online