2009b - h''qyz ` xhqnq ,zihxwqic dwihnznl `ean 'a cren -...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: h''qyz ` xhqnq ,zihxwqic dwihnznl `ean 'a cren - ogand oexzt onqheb hxaex didi ze`vezd mekqy jk zepey zeiaew 6 lihdl zeiexyt`d xtqn edn (`) .1 ? 20 oexzt mekqy jk zepey zeiaew 6 lihdl zeiexyt`d xtqn z` a n a onqp zlhda d`viy d`vezd z` ( 1 ≤ i ≤ 6 ) u i a onqp . n didi ze`vezd-ynd ly minly mixtqna zepexztd xtqnl deey a n f` . i xtqn diaew d`ee u 1 + u 2 + u 3 + u 4 + u 5 + u 6 = n, `id { a n } ∞ n =0 dxcqd ly zxveid divwpetd . 1 ≤ u i ≤ 6 miveli`d mr F ( x ) = ∞ X n =0 a n x n = ( x + x 2 + x 3 + x 4 + x 5 + x 6 ) 6 = x 6 (1 + x + x 2 + x 3 + x 4 + x 5 ) 6 = x 6 1- x 6 1- x 6 = x 6 (1- x 6 ) 6 1 1- x 6 = x 6 6- 6 1 x 6 + 6 2 x 12- 6 3 x 18 + ... 1 1- x 6 . y mircei ep` . F ( x ) a x 20 ly mcwna xnelk , a 20 a mipiipern ep` ( * ) 1 1- x 6 = ∞ X n =0 ( n + 6- 1)! (6- 1)! n ! x n = ∞ X n =0 n + 5 5 x n . 1 okl , ( * ) iehiaa x 2 e x 8 , x 14 ly mincwna mipiiperne a 20 = 6 14 + 5 5- 6 1 8 + 5 5 + 6 2 2 + 5 5 = 6 19 5- 6 1 13 5 + 6 2 7 5 . cg` s`a miwlgzn mpi` 1000-l mieey e` miphw miirah mixtqn dnk (a) ? 4 , 5 , 6 , 14 :mixtqndn oexzt a onqp . 4 a miwlgzny 1000 e 1 oia mixtqnd zveaw z` A 1 a onqp z` A 3 a onqp . 5 a miwlgzny 1000 e 1 oia mixtqnd zveaw z` A 2 zveaw z` A 4 a onqp . 6 a miwlgzny 1000 e 1 oia mixtqnd zveaw A i ly milynd z` A i a onqpe . 14 a miwlgzny 1000 e 1 oia mixtqnd a mipiipern ep` . { 1 , 2 , 3 ,..., 1000 } dveawa | A 1 ∩ A 2 ∩ A 3 ∩ A 4 | . :lawp dgcdde dlkdd oexwr it lr | A 1 ∩ A 2 ∩ A 3 ∩ A 4 | = 1000- ( | A 1 | + | A 2 | + | A 3 | + | A 4 | ) + ( | A 1 ∩ A 2 | + | A 1 ∩ A 3 | + | A 1 ∩ A 4 | + | A 2 ∩ A 3 | + | A 2 ∩ A 4 | + | A 3 ∩ A 4 | )- ( | A 1 ∩ A 2 ∩ A 3 | + | A 1 ∩ A 2 ∩ A 4 | + | A 1 ∩ A 3 ∩ A 4 | + | A 2 ∩ A 3 ∩ A 4 | ) + | A 1 ∩ A 2 ∩ A 3 ∩ A 4 | . , x l deey e` ohwy lecb ikd mlyd xtqnd z` [ x ] a onqp iynn x xear lynl [17] = 17 , [3 . 5] = 3 , [3 . 2] = 3 , [3 . 9] = 3 . dveawa mixtqnd xtqn f` miirah mixtqn a,b,c,d m`y xirp B = { 1 , 2 , 3 ,...,n } l deey a a miwlgzny [ n a ] xear . 4-l miwlgzny mixtqn [ 20 4 ] = 5 yi , a = 4 e n = 20 xear lynl . 4-l miwlgzny mixtqn [ 19 4 ] = 4 yi , a = 4 e n = 19 l deey b-a mbe a-a mb miwlgznd B dveawa mixtqnd xtqn [ n lcm( a,b ) ] 2 xnelk , b e a ly zilnipind ztzeynd dletkd `ed...
View Full Document

This note was uploaded on 01/26/2012 for the course IEM 101.1911.1 taught by Professor Yuliaglushko during the Spring '11 term at Ben-Gurion University.

Page1 / 8

2009b - h''qyz ` xhqnq ,zihxwqic dwihnznl `ean 'a cren -...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online